Skip to main content
Fig. 1 | Molecular Brain

Fig. 1

From: Functional identification of potential non-canonical N-glycosylation sites within Cav3.2 T-type calcium channels

Fig. 1

Functional and biochemical analysis of glycosylation-deficient Cav3.2 channels. a Schematic representation of the membrane topology of Cav3.2 channel depicting the localization of asparagine residues within potential non-canonical glycosylation motifs. b Result of the in-silico N-glycosylation prediction. Position of the key asparagine residues (N) within the potential glycosylation motif (NXC) is indicated, along with the quantitative (threshold 0.5) and qualitative score. Pro-X1 indicates the presence of a proline residue in position + 1 of the asparagine residue which is known to limit the likelihood for glycosylation. c Representative T-type current traces recorded from tsA-201 cells expressing wild-type (WT) Cav3.2 channels (black traces), and N258Q (blue traces), N335Q (green traces), N345Q (purple traces), N1780Q (orange traces) mutated channels in response to 150 ms depolarizing steps to values ranging from − 90 to + 30 mV from a holding potential of − 100 mV. d Corresponding mean peak current density–voltage (I/V) relationship. The I/V curve of the WT channel is reported in dotted line for comparison. e Corresponding mean normalized maximal macroscopic conductance (Gmax) values obtained from the fit of the I/V curves with a modified Boltzmann equation. f Representative immunoblot of Cav3.2 channel variants from total cell lysate (total expression, left panel) and corresponding mean total expression as percent of WT channels. The expression of the channels was normalized to Na+/K+ ATPase. g Legend same as in (f) but for surface biotinylated fractions (surface expression). The biochemical analysis was repeated five times from independent transfections with similar results

Back to article page