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Abstract

Background: Deposition of amyloid-f protein (AB) is a major pathological hallmark of
Alzheimer's disease (AD). A is generated from y-secretase cleavage of amyloid precursor protein
(APP). In addition to APP, y-secretase also cleaves other type | integral membrane proteins,
including the Notch receptor, a key molecule involved in embryonic development.

Results: To explore selective y-secretase inhibitors, a combination of five methods was used to
systematically determine these inhibitors' profiles on the y-secretase cleavage of APP and Notch.
When two potent y-secretase inhibitors, compound E (cpd E) and DAPT, were used in a
conventional in vitro y-secretase activity assay, cpd E completely blocked A generation from the
cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD
generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch
substrate NotchAE. Both cpd E and DAPT were more potent in blocking AB generation than NICD
generation. Third, a reporter construct was created that carried the NICD targeting promoter
with three Su(H) binding sequences followed by the luciferase gene. We found that the inhibition
of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase
gene driven by this Notch targeting promoter. Fourth, levels of "Notch-AB-like" (NB*) peptide
derived from two previously reported chimeric APP with its transmembrane domain or the
juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nf*
peptides by ELISA confirmed that ECgy's of cpd E were much higher for Nf* than A. Finally, the
expression levels of Notch target gene heré in cpd E or DAPT-treated zebrafish were correlated
with the degree of tail curvature due to defective somitogenesis, a well characterized Notch
phenotype in zebrafish.

Conclusion: Our ELISA-based quantification of AR and Nf* in combination with the test in
zebrafish provides a novel approach for efficient cell-based screening and in vivo validation of APP
selective y-secretase inhibitors.
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Background

Genetic and neuropathologic evidence suggests that
Alzheimer's disease (AD) is caused partly by the overpro-
duction and lack of clearance of the amyloid  peptide
(AB) [1]- This AP peptide is generated by sequential cleav-
ages of the amyloid precursor protein (APP) by B-secre-
tase, which generates a 12 kDa C-terminal stub of APP
(C99), and by y-secretase to yield two major species of Af
that end at residue 40 (AB,,) or 42 (AB,,) [2,3]. In addi-
tion to cleaving APP, y-secretase also mediates the final
proteolytic cleavage of the Notch receptor [4,5]. Notch
signaling is critical to a wide variety of cell fate determina-
tions during embryonic development as well as through-
out adulthood. After ectodomain shedding, the remaining
membrane-bound C-terminal stub is cleaved by y-secre-
tase to release the Notch-1-f3 peptide (Nf, similar to amy-
loid B peptide from APP) and the Notch IntraCellular
Domain (NICD). NICD is subsequently translocated to
the nucleus where it regulates gene expression [5-7].

There are about 50 y-secretase substrates in addition to
APP and Notch that include DCC [8], ErbB-4 [9,10], E-
and N-cadherin [11,12], CD44 [13,14], LRP [15],
Nectinla [16], Delta and Jagged [17], Glutamate Receptor
Subunit 3 [18], APLP1 and APLP2 [19-21], p75 Neuro-
trophin Receptor [22], Syndecan3 [23], Colony Stimulat-
ing factor-1 [24] and Interleukin-1 Receptor II [25]. All of
these substrates are type I membrane proteins and have
diverse functions, including transcriptional regulation,
cell-cell adhesion, regulation of ion conductance, and
neurotrophin signaling. The cleavage of these proteins can
be blocked by reported y-secretase inhibitors and are fully
dependent on each y-secretase component [26].

y-Secretase is composed of presenilin 1 (PS1), anterior
pharynx defective-1 (Aph-1), presenilin enhancer-2 (Pen-
2), and nicastrin (Nct). PS1 carries the catalytic site of y-
secretase, as we have demonstrated that a mutation of two
critical aspartate (Asp) residues abrogates enzymatic activ-
ity [27]. Nicastrin is required for y-secretase activity [28-
35] and is an important component in the complex, pos-
sibly functioning as the receptor for different substrates
[36]. Genetic screens further revealed the aph-1 gene and
the pen-2 gene that encodes two essential components of
the y-secretase complex [37,30,38]; overexpression of all
four components results in increased y-secretase activity,
both in mammalian cells [39-44] and in yeast [45].

Among all reported y-secretase inhibitors, transition-state
analogues prevent Af} generation and bind directly to PS1
and PS2 [46,47]. Most reported y-secretase inhibitors spe-
cifically block the cleavage at both sites in APP and Notch
without differentiating between the two substrates. It has
been reported that a subset of NSAIDS (nonsteroidal anti-
inflammatory drugs) that include ibuprofen, indometh-
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acin and sulindac sulphide, specifically block the cleavage
of the y-secretase substrates at the middle of transmem-
brane domain (TMD) without affecting the generation of
the intracellular domains (ICDs) of several type I trans-
membrane proteins that include APP, ErbB-4, and Notch
[48]. These NSAIDs directly modulate y-secretase complex
and become a part of a new class of y-secretase modulators
[49-54]. Another y-secretase modulator is Gleevec that has
been approved for the treatment of chronic myeloid
leukemia and gastrointestinal stromal tumors. In addition
to Gleevec binding to Abelson leukemia (Abl) tyrosine
kinase, it also was shown to selectively inhibit APP cleav-
age and AP production without affecting Notch cleavage
at the concentration of 10 uM [55].

Two potent y-secretase inhibitors, DAPT and compound E
(cpd E), show a range of IC;, values in blocking y-secretase
activity in both in vitro and cell-based assays. For cpd E,
the IC;, for NICD and A generation in cultured cells was
found as low as 1.7 nM [56] and 0.3 nM [57], respectively.
De novo AP and AICD generation in vitro was inhibited by
DAPT with ICs, values ranging from 10-100 nM [58,59].
A direct comparison of NICD and AICD levels in an in
vitro y-secretase activity assay showed a partial inhibition
of NICD generation by DAPT at 50 nM, and AICD at 100
nM [60]. Different assay systems were implemented in
these various studies to measure the IC;, values of the vy-
secretase inhibitors. Since there were a variety of assays
used, it was difficult to compare the potency toward the
cleavage of APP and Notch among different systems.

The current study combined five assay methods and sys-
tematically determined the pharmacological profile of
cpd E and DAPT on y-secretase cleavage of APP and Notch.
This approach includes the measurements of the potency
of y-secretase inhibitors and their effect on the inhibition
of the y-secretase activity in vitro, NICD generation, NICD
downstream transcription activation, cleavage of APP/
Notch chimeric substrates, and Notch downstream target
gene expression in zebrafish. Previous studies showed that
treating zebrafish with DAPT at the late blastula stage
caused defects in somitogenesis and neurogenesis [61].
Similarities have been observed between DAPT-treated
embryos and previously reported zebrafish Notch path-
way mutants like bea, des, aei, and wit [62,63]. The
increased neurogenesis in DAPT-treated embryos can be
reduced by microinjecting NICD mRNA. Interestingly,
defective somitogenesis was not observed in zebrafish
embryos that were treated with the Af-lowering JLK non-
peptidic isocoumarin inhibitors [64]. In this study, the
expression levels of Notch target gene her 6 were corre-
lated to the phenotypes that were observed in the embryos
treated with DAPT and cpd E. This provided an in vivo sys-
tem to test the effect of y-secretase inhibitors on Notch sig-
naling in a whole vertebrate animal.
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Results

Low concentration of compound E selectively blocks A
production with minimum effect on NICD generation in
vitro

To characterize the direct effect of two y-secretase inhibi-
tors cpd E and DAPT on APP/Notch cleavage, a conven-
tional in vitro y-secretase assay to quantify their inhibitory
potency was used [58,65,66]. The incubation of y-secre-
tase complex with purified substrates at 37°C for 4 hr was
followed by Western Blot (WB) to determine the quantity
of newly generated NICD. A newly generated band that
corresponds to the predicted size of the NICD-Flag was
detected (Fig. 1A and 1B). A clear reduction of NICD gen-
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eration in samples containing DAPT (Fig. 1A) or cpd E
(Fig. 1B) was found, and the reduction was dose depend-
ent.

The same preparation of y-secretase complex was mixed
with C100Flag followed by ELISA to quantify the levels of
newly generated AB. As expected, both DAPT (Fig. 1C)
and cpd E (Fig. 1D) blocked y-secretase cleavage of APP
C100Flag and caused a dose-dependent reduction of AB
production.

Close comparison of the inhibition profile of cpd E and
DAPT on AP and NICD generation revealed a divergence
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Generation of NICD and Af} from purified APP and Notch substrate C100 and N100 in an in vitro y-secretase
activity assay. The E. coli generated APP- and Notch-based, 100-residue y-secretase substrates C100-Flag and N100-Flag
were mixed with the membrane vesicles solubilized in CHAPSO after DMSO or compounds were added. The mixture was
incubated at 37°C for 4 hours. A. A dose-dependent inhibition of NICD generation by DAPT. Generation of NICD was
detected by Western blot (WB) with antibody 1744 specifically recognizing N-terminus of NICD. B. Generation of NICD was
inhibited in the presence of 100 nM of cpd E. C. Levels of NICD determined by WB were quantified by densitometry (dotted
line). Levels of AP generated from the y-secretase cleavage of C100 in the presence of DAPT were determined by ELISA (solid
line). Comparison of NICD and A generation in the presence of DAPT suggests that high concentrations of DAPT were more
potent in blocking AP than NICD generation. D. NICD (dotted line) and A (solid line) generation in the presence of cpd E
were compared. Cpd E inhibited AP generation with an ICs, of | nM and is more potent in inhibiting Ap than NICD.
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in their potencies. Low concentrations of DAPT did not
show much difference in inhibiting NICD and AP genera-
tion, but 10 and 100 uM of DAPT blocked ~60% of NICD
generation compared to a complete depletion of AP pro-
duction (Fig. 1C). While 100 nM of cpd E could almost
deplete any AP generation from substrate APP C100, its
effect on NICD was much less obvious (Fig. 1D). There
was only minor reduction of NICD levels compared to
DMSO controls. This led to the speculation that certain y-
secretase inhibitors may specifically inhibit APP at a par-
ticular range of doses that have minimum effect on Notch
signaling.

Compound E and DAPT differentially inhibit A5 and NICD

generation in cultured cells

Since many compounds could behave differently in vitro
versus in culture cells, cpd E and DAPT were tested in cul-
tured cells (Fig. 2). HEK293 cells stably expressing Swed-
ish mutant APP were transiently transfected with
NotchAE, a truncated Notch construct that is readily
cleaved by the y-secretase to generate NICD for down-
stream signaling transduction [67]. NotchAE expressing
cells were treated with increasing concentrations of DAPT
or cpd E. Cell lysates were subjected to WB for measuring
the generation of NICD (Fig. 2A), and conditioned media
were collected for AR measurement by ELISA (Fig. 2B,C).

Semi-quantification of NICD levels was detected by WB,
and the inhibition profile of DAPT (Fig. 2B) and cpd E
(Fig. 2C) were compared on NICD and AP generation in
cultured cells. It was found that high doses of DAPT and
cpd E could not completely eliminate NICD generation in
cultured cells. This was in contrast to Af levels that were
efficiently reduced to almost undetectable levels. Since
Notch signaling and levels of NICD can be examined by
quantifying the expression of the Notch target gene, a Hes-
1 reporter construct (Hes-Luc) was generated by insertion
of three Su(H) binding sequences in the pGL3-pro luci-
ferase reporter vector. Hes-Luc and NotchAE were tran-
siently transfected into HEK293 cells, and transfected cells
were treated with different concentrations of cpd E or
DAPT. Consistent with the levels of NICD that was freshly
generated in cultured cells, luciferase activities were inhib-
ited by relatively high doses of cpd E and DAPT. At the
concentrations of cpd E and DAPT that completely
blocked AP generation (Fig. 2B and 2C), about 50% luci-
ferase activities remained, i.e., inhibition of NICD genera-
tion was less efficient compared to AP blockage (Fig. 2D).

A chimeric APP-Notch ELISA differentiates cpd E in
inhibiting APP versus chimeric APP-Notch

Two cDNA constructs expressing chimeric APP and Notch
were previously reported to generate chimeric "Notch-Af-
like" (NB*) peptide [68]. One construct has its transmem-
brane domain (TMD) replaced by the Notch TMD (APP-
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m-NOTCH) and the other with the juxtamembrane por-
tion of the APP ectodomain (the a-secretase cleavage
region) replaced by the corresponding sequence in Notch
(APP-a-NOTCH) [68]. Taking advantage of different com-
binations of ELISA antibodies (see Methods), effects of
cpd E on the generation of Ap and Nf* peptides from
these chimeric APP-Notch substrates were quantified by
ELISA.

Individual construct APP, APP-a-Notch or APP-m-Notch
was transiently transfected into HEK293 cells. These chi-
meric protein expressing cells were treated with cpd E, and
the levels of Ap and NB* were measured by ELISA. Again,
it was found that the effective concentration (EC) for
inhibiting 50% of Ap production by cpd E was less than
0.1 nM, but the EC5, for NB* from o-Notch was at ~8 nM
(Fig. 3A). Similar results were obtained when m-Notch
was expressed in HEK293 cells. At least two magnitude of
difference was observed, with ECs, for cpd E was ~0.03
nM for APP, compared to ECs, for NB* at~1 nM (Fig. 3B).

Defective zebrafish phenotypes illustrated inhibition of
Notch signaling

Measurements of in vitro y-secretase activity and cell-based
AB/NICD generation have shown different inhibition
potencies. To examine the inhibitory effect in wvivo,
zebrafish embryos were treated with DAPT or cpd E.
Because different y-secretase inhibitors may impact vari-
ous metabolic pathways in zebrafish embryos, especially
during development, the phenotypes of zebrafish
embryos treated with high concentrations of DAPT and
cpd E were compared. The major phenotype we examined
was curved tail caused by defective somitogenesis.

Morphological alteration in DAPT- or cpd E-treated
embryos was compared and correlated to the somitogen-
esis associated with the inhibition of Notch signaling. The
treated embryos were examined using a stereomicroscope
and it was found that embryos treated with 50 uM DAPT
had a much shorter and curved tail, compared to control
DMSO-treated embryos (Fig. 4A). The curvature was obvi-
ous when a lateral view of zebrafish was obtained. Cpd E,
on the other hand, did not show any curvature when
treated at 50 uM. Because the EC, values for DAPT and
cpd E to reduce NICD generation in cultured cells were
~1000 nM and 10 nM, respectively (Fig. 2B and 2C), 50
uM of DAPT and cpd E were chosen as the highest concen-
trations for the treatment.

When embryos were kept for four days, embryos treated
with 50 uM DAPT continued to show the curvature of the
tails (Fig. 4B). DMSO-treated embryos exhibited normal
morphology with straight trunk and tail. Cpd E had a
minor effect on embryo morphology, and the embryos
maintained straight trunk and tails (Fig. 4B).
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Generation of NICD and A from NotchAE and APP expressing cells. A. Twenty four hrs after the construct carrying
NotchAE was transfected into APP expressing HEK293 cells, cells were treated with DAPT or cpd E for 8 hr and lysed for WB
with antibody 1744 to specifically detect the N-terminus of NICD. Bottom panel, the antibody against a-tubulin was applied to
normalize the amounts of lysates used for WB. B. Levels of NICD determined by WB were quantified by densitometry (dotted
line). Levels of AP generated from the y-secretase cleavage of APP in the presence of DAPT were determined by ELISA. Com-
parison of NICD and A generation in the presence of DAPT suggests that high concentrations of DAPT had a greater inhibi-
tion of AP than NICD. C. NICD (dotted line) and AP (solid line) production from cpd E-treated cells were compared. Cpd E
inhibited AP generation with an ICs, of ~8 nM, and it shows a greater inhibition of Af than NICD. D. A luciferase reporter
construct driven by HES| promoter was transfected into HEK293 cells followed by treatment with cpd E or DAPT. Both -
secretase inhibitors blocked transcriptional activation of NICD dependent luciferase activity.

Expression of Notch target gene heré correlates with the the levels of Notch signaling, i.e., a loss of her6 staining

phenotypes of zebrafish treated with j)-secretase inhibitors
To examine the effect of DAPT and cpd E on Notch sign-
aling, embryos treated with different concentrations of
DAPT or cpd E were stained by whole mount in situ
hybridization using a her6 probe (Fig 5). The expression
level of Notch downstream target gene her6 correlates to

corresponds to an inhibition of y-secretase mediated
Notch signaling. We have focused on the specific effect of
y-secretase inhibitors on Notch signaling in brain region.

In DMSO-treated embryos, her6 expression was mainly
clustered in the ventral midbrain and ventral hindbrain
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Figure 3

Generation of A} and Nf* from chimeric APP-Notch expressing cells. A. The juxtamembrane portion of the APP
ectodomain (the a-secretase cleavage region) was replaced by the corresponding sequence in Notch (a-NOTCH). Levels of
NB* in the media from cells expressing APP-a-Notch (dotted line) and levels of AB from APP expressing cells (solid line) were
determined by ELISA. B. A chimeric cDNA constructs express APP with its transmembrane domain (TMD) replaced by the
Notch TMD (APP-m-NOTCH). Levels of AB (solid line) and Nf* (dotted line) were determined by ELISA.

(Fig. 5). In the presence of 50 pM DAPT, the her6 expres-
sion was significantly reduced or disappeared in most
areas, reflecting a strong inhibition of y-secretase activity.
When embryos were treated with a lower concentration of
DAPT at 5 puM, staining of her6 started to appear in those
areas found in DMSO-treated embryos. Embryos treated
with 0.5 pM DAPT showed a very similar staining pattern
to the control embryos. Interestingly, cpd E showed a
weaker effect on the expression levels of her6. There was a
reduction of her6 staining in those embryos that were
treated with highest testing doses of cpd E. When the her6

staining is linked to morphological alterations (Fig. 5),
the level of reduction in Notch signaling is closely linked
with the severity of phenotypes that was observed in these
zebrafish, i.e., the curvature of the tails.

Discussion

Our knowledge of y-secretase components distinguishing
different substrates provides a molecular basis for the
modulation of y-secretase complex. Nicastrin has been
found to interact with both APP and Notch and is
involved in substrate recognition and interaction [36]. An
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Treatment of zebrafish embryos with DAPT causes curved tails. A. A stock of DAPT or cpd E in DMSO was diluted

in embryo medium, and increasing concentrations of DAPT or cpd E were applied to de-chorionated zebrafish embryos incu-

bated at 28°C from 24 hpf to 48 hpf. Control embryos were mock-treated with embryo medium containing the same concen-
tration of DMSO. Treatment of zebrafish embryos with 50 M DAPT caused curved trunk and tails. B. DAPT- or cpd E-treated

embryos were kept until 4 dpf, and images were acquired at 40 X magnification.

artificial elongation of the Pen-2 N-terminus leads to an
increased AB,, production [69], indicating that Pen-2
might function as a modulator to influence the y-secretase
cleavage of APP. Identification of a key regulator of y-
secretase complex TMP21 further suggests that cleavage of
APP and Notch could be distinguished and modulated
[70]. While the development of y-secretase inhibitors is
one of the major directions for AD therapeutics, com-
pletely blocking the y-secretase-mediated proteolytic proc-
ess of about 50 substrates interferes with fundamental
steps in many biological functions. Therefore, identifying
y-secretase modulators that only block the cleavage of
APP, but not other substrates is ideal. Different from ear-
lier studies that have identified NSAIDs and Gleevec for
specific blockage of AR production without affecting the y-
secretase cleavage of Notch, the current study has pro-
vided a systematic approach to identify y-secretase inhibi-
tors to modulate the y-secretase cleavage of APP and
Notch separately.

We have analyzed two potent y-secretase inhibitors DAPT
and cpd E using different quantification methods to deter-
mine the pharmacological profile of blocking the cleavage
of APP and Notch. The range of inhibition concentrations
vary among these methods. However, the effective inhib-

itory concentrations for Notch cleavage were always
found to be higher than those concentrations for APP
cleavage. In a conventional in wvitro y-secretase activity
assay, 0.1 uM of cpd E completely blocked AB generation
from the cleavage of substrate APP C100, and only had
minor effect on Notch cleavage and NICD generation.
Cpd E selectively inhibited the y-secretase cleavage of APP
at low concentrations, i.e., from 0.1 nM to 10 nM. How-
ever, at the same concentrations, we found that DAPT did
not inhibit the y-secretase cleavage of APP and Notch (Fig.
1C). When higher concentration of DAPT was used in our
in vitro y-secretase activity assay, a partial inhibition of
Notch cleavage was observed, in contrast to an almost
complete inhibition of APP cleavage. Therefore, DAPT
selectively blocked the y-secretase cleavage of APP at
higher concentration compared to compound E. When
cpd E or DAPT were applied to HEK293 cells that
expressed the substrate NotchAE, we found that both
compounds were more potent in blocking Af} generation
than NICD production. DAPT at concentrations of 1 uM
or higher reduced Notch cleavage to about 50% in both in
vitro y-secretase activity assay (Fig. 1B) and cell culture
based assay (Fig. 2B). Cpd E at 0.1 uM reduced Notch
cleavage to ~50% in both systems. For the y-secretase
cleavage of APP, DAPT was able to inhibit the levels of AP
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Expression levels of Notch target gene heré are consistent with the curvature phenotype. Increasing concentra-
tions of DAPT or cpd E were applied to de-chorionated zebrafish embryos from 24 hpf until 48 hpf, and in situ hybridization of
compound-treated embryos was carried out at 48 hpf using the heré probe. At least 10 to 20 embryos were examined for each
experiment. Images were taken at the 64X magnification for stained embryos.

to 50% at the concentration of 1 uM in vitro and ~0.5 uM
in cultured cells, respectively. Compound E, on the other
hand, was able to reduce the levels of AB to 50% at the
concentrations of 1 nM and 5 nM in two systems. There-
fore, DAPT and cpd E showed similar potencies in cul-
tured cells and in vitro y-secretase activity assay. The level
of NICD inhibition was consistent with the reduced
expression of Luciferase gene driven by a Notch target
gene promoter containing three Su(H) binding
sequences. Using two previously reported chimeric cDNA
constructs expressing APP-m-NOTCH or APP-a-NOTCH,
cpd E showed much higher EC;,'s for lowering the levels
of NB* derived from the cleavage of APP-m-NOTCH and
APP-a-NOTCH. Finally, the expression levels of Notch
target gene her6 in a whole animal zebrafish, as measured
by in situ hybridization, were correlated with the dose-
dependent phenotypic effect of DAPT. The effect of cpd E
was less obvious and hence, consistent with a less reduc-
tion of her6 expression.

Previous studies have applied similar compounds to dif-
ferentiate their effect on the y-secretase cleavage of Notch
and APP, and some showed selective inhibition of A pro-
duction without Notch phenotypes in animals [71]. Lewis
et al. have used a set of compounds for the test, and some
of these compounds (like compound 1) have similar
structures to DAPT [72]. Using cultured cells to test the
potencies of different compounds, they found that Notch
and APP cleavages cannot be easily dissected apart [72].
We have used additional methods to determine the inhi-
bition profile of DAPT and cpd E, including in vivo ani-
mal based assays. In cultured cells expressing NotchAE or
chimeric APP-Notch proteins, cpd E was more effective in
inhibiting APP than Notch substrate. DAPT showed simi-
lar effect in cultured cells and in an in vitro y-secretase
activity assay. Both y-secretase inhibitors DAPT and cpd E
are believed to interact with the core component of the y-
secretase complex, PS. Mutation of two aspartate residues
in PS1 leads to a complete loss of function for y-secretase
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which suggests that these two aspartates may constitute
the active site of y-secretase [27]. Both aspartyl protease
transition state mimic and non-transition-state y-secretase
inhibitor could specifically bind the N- and C-terminal
fragments of PS1 [73,46,57]. The binding of the y-secre-
tase inhibitor to PS1 NTF/CTF could be then competi-
tively suppressed by the presence of cpd E [57]. DAPT was
found to specifically interact with the C-terminal region of
PS1 [59]. Studies that use helical peptide inhibitors to
block the y-secretase complex suggest that a docking and
an active site exist for the y-secretase complex, and that the
docking site might be located at the PS subunit interface,
a site very close to the active site [74]. It is not clear
whether different concentrations of DAPT and cpd E may
affect the docking site in a way that differentiate the bind-
ing of APP and Notch to the y-secretase complex.

Both DAPT and cpd E have been used to treat animals.
DAPT was specifically tested in zebrafish [61]. Zebrafish
have a highly conserved y-secretase complex. Both
zebrafish PS1 (Psenl) and the PS2 homolog (Psen2) are
expressed during the segmentation and later stages [75-
77]. Nicastrin has been identified in the zebrafish
genome, and only one copy of Psen1, Psen2, Pen-2, and
Aph-1 gene has been found [30]. Once the highly similar
zebrafish y-secretase complex is inhibited by DAPT, somi-
togenesis is severely affected leading to curved tails, a phe-
notype well-characterized for altered Notch signaling
[61]. In this study, a dose dependent effect of DAPT on
zebrafish phenotypes was observed, and a curvature of
zebrafish tail was found in embryos treated with 50 uM of
DAPT. Although the EC;, of DAPT for inhibiting Notch
signaling was much lower in cultured cells (1-10 uM, Fig.
2), it is not surprising that a high concentration of DAPT
was necessary to induce a phenotype in a whole animal
(50 uM, Fig. 4). For cpd E, the highest concentration used
to treat embryos was 50 uM compared to an ECs, that was
below 0.1 uM for the inhibition of NICD generation in
cultured cells (Fig. 2). For both DAPT and cpd E, there is
no data on pharmacokinetics, pharmacodynamics and
ADME of these two compounds in zebrafish. While both
cpd E and DAPT are cell permeable, a lack of dramatic
phenotypic alteration in embryos treated with 50 uM cpd
E could be best explained by a slightly reduced expression
level of her6 gene. This indicates that Notch signaling was
not significantly perturbed at this concentration of cpd E
in a whole animal.

Administration of cpd E into guinea pig resulted in a dose-
dependent inhibition of brain cortical y-secretase activity
and correspondingly, decreases in plasma, CSF and brain
AP levels [78]. Treatment of a transgenic mouse expressing
human familial AD linked V717F APP with DAPT also
leads to a dose-dependent, acute decrease in brain AR
[79]. Treatment of AD patients with another y-secretase
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inhibitor, LY450139 dihydrate, reduces plasma AP40.
This compound was well tolerated in these patients [80-
82]. Therefore, modulated inhibition of y-secretase is fea-
sible in human subjects, and potent inhibitors used at
appropriate doses appear to be promising in preventing
the progression of Ap pathology.

Conclusion

Our measurement of A and Notch-AB-like peptides from
chimeric APP proteins could be used for efficient cell-
based screening of y-secretase modulators. These modula-
tors could be tested by in vitro y-secretase activity assay.
The in vivo test results presented here of these compounds
in a vertebrate zebrafish further validate our quantitative
methods to differentiate their selectivity for APP, Notch
and potentially other y-secretase substrates.

Methods

In Vitro )~Secretase Activity Assay

The E. coli generated APP- and Notch-based, 100-residue
y-secretase substrates C100-Flag and N100-Flag were puri-
fied as previously described [65]. C100-Flag substrate con-
tains an initiating methionine, the 99 C-terminal residues
of APP that start at the a-secretase site, and a Flag tag.
N100-Flag substrate contains a similar initiating methio-
nine, 99 amino acids that start at the TACE cleavage site,
and a Flag tag. The membrane vesicles were solubilized in
1% CHAPSO-HEPES and diluted in a final concentration
of 0.2% CHAPSO-HEPES. Phosphatidylethanolamine
(PE) and phosphatidylcholine (PC) were added to the
final concentration of 0.02% PE and 0.08% PC. After add-
ing DMSO or test compounds to the solubilized y-secre-
tase complex, substrate C100-Flag or N100-Flag was
added to the mixture, then followed by incubation at
37°C for 4 hours [65,83]. Two compounds have been
used in this study, compound E (cpd E), {(S,S)-2-[2-(3,5-
Difluorophenyl)-acetylamino]-N-(1-methyl-2-oxo-5-
phenyl-2,3-dihydro-1H-benzo [e] [1,4] diazepin-3-yl)-
propionamide} [57] and DAPT {N-[N-(3,5-Difluoroph-
enacetyl-L-alanyl)|-S-phenylglycine ¢-Butyl Ester} [79].
Cpd E was provided by Dr. Michael Wolfe.

ELISAs and Antibodies

Sandwich ELISAs for Ap were performed as described [84].
The capture antibodies, 2G3 (to A residues 33-40) and
4G8 (to AP residues 17-24), were used for AB40 and AB
total species, respectively. The detecting antibodies were
biotinylated 82E1 (to AP residues 1-16) for AB1-40/total
or biotinylated 266 for APx-40 species. The use of mid-
region and C-terminal capturing antibodies and N-termi-
nal detecting antibody for chimeric "Notch-AB-like" pep-
tide (NB*) has been documented [68]. The combination
of several capture/detecting antibodies are use to measure
AP and NB* derived from different precursors. The cap-
ture antibody 2G3 and detecting antibody 82E1 were used

Page 9 of 13

(page number not for citation purposes)



Molecular Brain 2008, 1:15

for measuring NB* from APP-a-Notch expressing cells.
Since the APP-a-NOTCH is the fusion protein with its jux-
tamembrane portion of the APP ectodomain (the a-secre-
tase cleavage region) replaced by the corresponding
sequence in Notch, the epitopes in APP sequence could
still be recognized by 2G3 (C-terminus) and 82E1 (N-ter-
minus). The capture antibody 4G8 and detecting antibody
82E1 were used for measuring N* from APP-m-Notch
expressing cells. Since the APP-m-NOTCH is the fusion
protein with its transmembrane domain (TMD) replaced
by the Notch TMD, the epitopes in APP sequence could be
recognized by 4G8 (mid-region before TMD) and 82E1
(N-terminus). Antibody 82E1 was purchased from
Immuno-Biological Laboratories, Inc., Minneapolis, MN.
Antibody 4G8 was purchased from Signet Laboratories,
Inc., Dedham, MA. Antibody 1744 that specifically detect
the N-terminus of NICD was purchased from Cell Signal-
ing Technology, Danvers, MA.

cDNA constructs for cell based j~secretase activity assay
The ¢cDNA construct NotchAE has a c-myc tag and is a
truncated Notch molecule that is an immediate substrate
for y-secretase cleavage to generate Notch intracellular
domain (NICD) [85]. Two chimeric cDNA constructs
express APP with (APP-m-NOTCH), or else the juxtamem-
brane portion of the APP ectodomain (the a-secretase
cleavage region) replaced by the corresponding sequence
in Notch (APP-a-NOTCH). These cDNA constructs were
provided by Dr. Dennis Selkoe [68]. Hes-1 reporter con-
struct (Hes-Luc) was generated by insertion three of Su(H)
binding sequence

5'-AGGTITCTCACTGTGGGGTAAGAAGGTTCTCACAGT-
GGGGTAAGAGGTTCTCACAGTC in the pGL3-pro luci-
ferase reporter vector (Promega, Madison, WI). The final
assemble is similar to a previously reported Notch
reporter construct [86].

Human embryonic kidney (HEK) 293 cells stably express-
ing Swedish mutant human APP695 were transfected with
different cDNA constructs and maintained in 200 pg/ml
G418 (Invitrogen, Carlsbad, CA). Transfected cells were
treated with two y-secretase inhibitors cpd E or DAPT for
8 hr. Conditioned media were collected for ELISA, and
cell lysates were analyzed by Western blot as described
[87]. Cells co-transfected with Hes-Luc and NotchAE were
treated with compounds followed by the measurement of
luciferase activity (Luciferase Assay System, Promega,
Madison, WI).

Zebrafish Embryo Treatment

Zebrafish embryos were raised and staged according to
Kimmel, et al. [88]. Compounds were dissolved in egg
water at various final concentrations, and 0.5% DMSO
was used as a negative control. Prior to the treatment at 24
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hour post fertilization, embryos were de-chorionated
manually. Embryos were placed in a 24-well plate (5-6
embryos/well) and treated with the compound contain-
ing egg water. Embryos were incubated at 28 °C, and pho-
tographic images were taken at 2 days and 4 days post
fertilization (dpf).

Microscope Imaging

Compound-treated embryos were observed under an
OLYMPUS SZX12 microscope. For examination, embryos
were removed from the compound containing medium
and placed into 0.4% tricane (3-amino benzoic acidethyl-
ester, Sigma, St. Louis, MO) solution. Upon anesthetizing,
embryos were placed in 3% methylcellulose for position-
ing and images were recorded with OLYMPUS Q-
COLOR3 camera. Images were taken at the 40x magnifi-
cation for embryos at 2 and 4 dpf.

In situ Hybridization

In situ hybridization of compound-treated embryos was
carried out at 2 dpf according to standard protocols [89]
using the her6 probe. Single-stranded RNA probes against
her6 were synthesized from a cDNA clone (provided by
Dr. P Raymond, University of Michigan, Ann Arbor, MI)
using T7 RNA polymerase after linearization by restriction
digest. The probe was then labeled with digoxigenin-UTP
(Roche, Basel, Switzerland). At least 10 to 20 embryos
were examined for each experiment. Images were taken at
64x magnification for stained embryos.
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