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Abstract
Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy
fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region.
Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk
neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent
manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal
slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in
granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of
K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most
notably in mossy fibers distal to the expression site. These findings are the first to clarify the role
of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a
paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend
further to form synapses with neurons that are far from active BDNF-expressing synapses. This
mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the
axons of new-born granule cells.

Background
Mossy fibers, which are the dentate granule cell axons, are
the only excitatory efferent projections of the hippocam-
pal dentate gyrus, which has a crucial role in certain types
of learning and memory. Mossy fibers have several unique
features. Each mossy fiber forms extraordinarily large syn-
apses with the proximal apical dendrites of only 11 to 18
pyramidal cells in the CA3 region [1]; further, the action
potentials of a single granule cell are strong enough to dis-
charge its target neurons. Importantly, granule cells are

continuously produced, even in adulthood [2], and newly
formed granule cells in the adult brain are more likely to
be recruited into circuits related to spatial memory than
existing granule cells [3]. Thus, mossy fibers from newly
formed granule cells are likely influenced by neuronal
activity. Elucidation of the neuronal activity-related
nature of these fibers, therefore, may provide clues to the
raison d'etre of these peculiar axons and dentate granule
cells.
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Mossy fibers bundle tightly together and extend into a
narrow region of the CA3 region called the stratum luci-
dum (SL), where they form synapses with CA3 pyramidal
cells. Inhibition of Trk neurotrophin receptors and the Trk
downstream molecule mitogen-activated protein (MAP)
kinase kinase (MEK) disrupts mossy fiber pathfinding [4].
The Trk receptors, TrkA, TrkB, and TrkC, are primarily acti-
vated by nerve growth factor (NGF), brain-derived neuro-
trophic factor (BDNF), and neurotrophin-3, respectively.
Because the highest BDNF protein levels in the brain are
found along the pathway from the dentate hilus to the SL
[5,6], BDNF is the candidate molecule most likely to be
involved in regulating mossy fiber pathfinding. Moreover,
the activity-dependence of BDNF biosynthesis and secre-
tion [7,8]. raises the interesting possibility that BDNF
mediates the interaction between active and newly-
formed BDNF-expressing neuronal circuits.

Several studies have focused on BDNF-induced abnormal-
ities in mossy fiber sprouting, which may be one etiology
of temporal lobe epilepsy. BDNF, which is highly upregu-
lated in some hyperactivity conditions, may [9,10] or may
not [11,12] induce mossy fiber sprouting [13]. The role of
BDNF in mossy fiber pathfinding under normal condi-
tions remains to be elucidated.

To investigate the role of BDNF in healthy mossy fiber for-
mation, we applied the broad-spectrum Trk neurotrophin
receptor inhibitor K252a in combination with local BDNF
gene expression induced with a lentivirus, which pro-
duced moderate and physiologic levels of BDNF. This
combined molecular and pharmacologic approach
allowed us to selectively examine effects of BDNF that
may be overlooked with simple loss-of-function experi-
ments, given the potential for redundancy between BDNF
and NGF within the SL.

Results
Gene expression and development of an assay system for 
tracking mossy fiber pathfinding
A neuron-specific α-calmodulin-dependent protein
kinase II (CaMKII) promoter was used for all expression
experiments [14]. The lentivirus suspension, which
expresses enhanced green fluorescent protein (EGFP), was
locally introduced at 2 or 3 sites in the granule cell layer
in hippocampal slices; almost all cells expressing EGFP
were granule cells, based on their cellular morphology
and localization in the granule cell layer (Fig. 1A and 1B,
Fig. 2C and 2D). The mossy fiber pathways could be spe-
cifically and clearly visualized by this method (Fig. 1B–
D). At 8 days in vitro (DIV), EGFP-expressing mossy fibers
in the control slices were generally restricted to the normal
path, the SL (Fig. 1C). In K252a-treated slices, however,
mossy fibers were abnormally distributed outside the SL
in both the CA3c and CA3a areas (Fig. 1D). In these slices,

the EGFP signal intensity was decreased in the SL and
increased in subregions other than the SL (Fig. 1E and 1F).
These data indicated that our new assay system was able
to produce and detect the aberrant mossy fiber growth
induced by K252a that was reported previously [4].

Co-expression of BDNF and Venus using the P2A peptide
Mossy fiber pathways in the cultured hippocampal slices
were rich in BDNF (Additional file 1), consistent with pre-
vious findings in brain sections [15]. Thus, BDNF was
selected from among candidate molecules whose signals
are attenuated by K252a. BDNF overexpression was
induced by lentivirus-mediated gene transfer to determine
whether the effects of a submaximal dose of K252a could
be attenuated. To identify cells overexpressing BDNF, we
co-expressed Venus, a GFP variant, using a self-cleaving 2A
sequence derived from picornavirus (P2A). Through a
ribosomal "skip" mechanism, the P2A peptide intercon-
necting two different proteins spontaneously cleaves,
thereby separating the proteins and theoretically produc-
ing equivalent amounts of both proteins [16].

A Venus-P2A-BDNF sequence was constructed by insert-
ing the P2A sequence between the Venus and BDNF
sequences. Distinct expression of BDNF and Venus was
confirmed by immunoblotting analysis of HEK293T cell
lysates transfected with the Venus-P2A-BDNF construct.
We confirmed that the expressed BDNF in the HEK293T
cells was secreted into the culture medium (Fig. 2A).

The BDNF expression levels produced in the cultured
slices using this virus were similar to the BDNF levels that
are endogenously expressed and accumulated, and were
visualized as punctate staining (Fig. 2B–F). We did not
observe the growth of any aberrant basal dendrites or
axonal branches as has previously been observed in
BDNF-overexpressing cells produced using a Gene gun
[17]; this discrepancy may be due to the fact that our
experimental system produced close to physiologic levels
of BDNF expression.

BDNF-overexpressing mossy fibers find normal pathways 
in the presence of a submaximal dose of K252a
In the expression experiments, 4 days after transfection,
preexisting mossy fibers were cut at a site proximal to the
CA3 region (dotted lines in Fig. 3), and the paths of newly
extended fibers expressing Venus were observed, because
substantial BDNF expression was obtained by 4 DIV (data
not shown). A 7-day K252a treatment was initiated soon
after the incision. In the control (nonK252a-treated)
slices, the Venus-labeled mossy fibers normally reex-
tended to and within the SL 7 days after the fibers were cut
(Fig. 3A). While treatment with low dose (100 nM) of
K252a was enough to defasciculate mossy fibers in the
ectopic subregions (Fig. 3B), similar to that shown in Fig-
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ure 1, BDNF-overexpressing mossy fibers extended to the
SL (Fig. 3C), similar to that observed in control
(nonK252a-treated) slices (Fig. 3D and 3E).

In order to determine the dose-response relationship
between the concentration of K252a and the action of
BDNF, we performed the same experiments with increas-
ing doses of K252a. We observed that the slices treated
with higher concentrations of K252a (200 nM and 300
nM) were rarely affected by BDNF expression (Additional
file 2).

These findings indicate that BDNF secreted by granule
cells (mossy fibers) supports normal mossy fiber path-
finding.

BDNF overexpression in CA3 pyramidal cells also rescues 
abnormal mossy fiber projection
To determine the possible site and mode of BDNF action,
we investigated whether BDNF overexpressed by CA3
pyramidal cells also regulates mossy fiber pathfinding.
Visualization of mossy fibers using biocytin (Fig. 4A and,
4B) confirmed the presence of misguided and defascicu-
lated fibers in the K252a-treated slices (Fig. 4C). In the
presence of K252a, when BDNF-carrying viruses were
injected in the CA3b area at the middle of the CA3 region,
mossy fibers extended beyond the CA3b area to the more
distal CA3a area and the paths gradually bundled within
the SL (Fig. 4D–F).

A novel approach for visualizing mossy fibers in cultured hippocampal slicesFigure 1
A novel approach for visualizing mossy fibers in cultured hippocampal slices. (A) A schematic diagram of locally 
introduced lentiviral vectors. Lentivirus, which induces the expression of enhanced GFP (EGFP) under the influence of a CaM-
KII promoter, was injected into 2 or 3 sites of the granule cell layer in hippocampal slices. (B) Representative images of the 
results. Granule cells specifically expressed EGFP. Green: EGFP immunoreactivity, Magenta: Nissl staining of the neurons. (C 
and D) Images of control slices (C) and slices treated with K252a (300 nM) (D) in the CA3c (C1, solid box in B1) and CA3a 
(C2, dotted box in B1) areas. Mossy fibers in control slices (C) were observed primarily in the SL, similar to what was 
observed in vivo, while those in the K252a-treated slices were abnormally distributed outside of the SL as shown in D. (E and F) 
Distribution of the mossy fibers treated by 100 and 300 nM of K252a as assessed by the measurement of EGFP intensity in the 
CA3c (E) and CA3a (F) areas. *P < 0.05 and ##, **P < 0.01; Tukey's test after analysis of variance (n = 7–9 slices obtained from 
4 independent experiments). DG: dentate gyrus, SR: stratum radiatum, SP: stratum pyramidale, and SO: stratum oriens.
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Structures like presynaptic varicosities were observed in
the labeled mossy fibers. It is noteworthy, however, that
the passing fibers did not form obvious varicosities on any
BDNF-expressing CA3 neurons (Fig. 4D).

Discussion
In this study, we used a combined molecular and pharma-
cologic approach to examine the effect of BDNF on hip-
pocampal mossy fiber pathfinding. Rat brain
hippocampal slices that included the CA3 region were
treated with a noncompetitive inhibitor of tyrosine kinase
activity of Trk receptors, K252a [18], combined with len-
tiviral vector-induced BDNF overexpression in either
granule cells or pyramidal cells. K252a, which was used to
inhibit the possible action of neurotrophin receptors, was
used at a submaximal dose (Fig. 1D and Additional file 2)
and is thus considered to act partially, allowing for the
remaining receptors to be activated by the expressed
BDNF. The results indicated that the overexpressed BDNF
in both types of cells rescued the K252a-induced abnor-
mal mossy fiber pathfinding.

BDNF is a neurotrophin that activates the Trk receptor
family, and other neurotrophins are suggested to have
compensatory roles [19]. Therefore, although BDNF-defi-

Figure 2

Co-expression of BDNF and Venus using P2A peptideFigure 2
Co-expression of BDNF and Venus using P2A pep-
tide. (A) Protein expression with the Venus-P2A-BDNF con-
struct, which was designed to produce Venus-P2A fusion 
protein and BDNF separately, was confirmed by performing 
an immunoblotting analysis for Venus, a GFP mutant, (A1) or 
BDNF (A2). In this experiment, the Venus-P2A-BDNF con-
struct was transfected to HEK293T. Even though a weak 
band was noted at the position of the non-cleaved fusion 
protein for Venus-P2A-BDNF, almost all signals were 
detected for the cleaved Venus-P2A. (A2) In the culture 
medium of HEK293 cells transfected with the Venus-P2A-
BDNF construct (lane a), a specific band was observed at the 
same molecular weight as that for the control from cells 
showing BDNF expression (lane b); this indicated that BDNF, 
when cleaved from the Venus-P2A-BDNF construct, fol-
lowed the normal course of processing and secretion. (B) 
Schematic diagrams of the expression vectors. (C-F) Immu-
nohistochemical staining for Venus (green) and BDNF 
(magenta) in the dentate gyrus (C, D) and CA3 region (E, F) 
of cultured slices transfected with the mock Venus-P2A- (C, 
E) or Venus-P2A-BDNF-carrying (D, F) virus. In D and F, 
Venus-positive cells showed intense BDNF staining in slices 
transfected with the Venus-P2A-BDNF virus, whereas 
endogenous BDNF and Venus were rarely colocalized in 
slices transfected with the mock virus (C and E). ML: molecu-
lar layer, GCL: granule cell layer, DH: dentate hilus, SL: stra-
tum lucidum, SP: stratum pyramidale, and SO: stratum 
oriens.
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cient mice have normal mossy fiber paths (Tamura et al.,
unpublished observation) and TrkB-deficient mice do not
show aberrant defasciculation of mossy fibers [20], BDNF
may still be critical for mossy fiber pathfinding because
other neurotrophins, such as NGF, that are also expressed
in the mossy fiber pathways [20], may apparently com-
pensate for the lack of BDNF signaling.

Experiments with pharmacologic inhibitors sometimes
overcome functional redundancy in molecules. In addi-
tion, gene expression (of BDNF in this case) is a powerful
method to confirm the specificity of molecular partici-
pants compared to pharmacologic treatment. In the
present study, a novel combination of pharmacologic and
molecular expression approaches was developed to eluci-
date the function of a molecule that may have otherwise
remained hidden due to redundancy. Although rescue
experiments using multiple gene-deficient mice, as
reported previously [21], may be more powerful, the use
of the present combined molecular and pharmacologic
approach demonstrated for the first time that BDNF influ-

ences mossy fiber pathfinding. A similar combinatorial
approach may be a useful first step toward examining the
biologic functions of molecules within a family.

Although BDNF functions as a chemoattractant for vari-
ous neurons, including Xenopus spinal neurons, rat cere-
bellar neurons, and chick retinal ganglion neurons [22-
24], the present findings in the hippocampus were not
consistent with a chemoattractant function of BDNF for
the following reasons. First, BDNF produced within the
guided axons was sufficient to regulate their paths (Fig. 3);
and second, when BDNF was expressed in CA3 pyramidal
cells, the fibers did not target the cells in which BDNF was
overexpressed, but rather gradually became fasciculated
after they passed through the region of cells overexpress-
ing BDNF (Fig.4). BDNF may instead affect the expression
and/or activation of cell adhesion molecules that form
mossy fiber bundles with one another and/or bind to the
proximal dendrites of CA3 pyramidal cells. Reports show-
ing that BDNF mediates cadherin-catenin interactions in
dissociated hippocampal neurons and that some types of

BDNF expressed in granule cells rescued the aberrant mossy fiber extension induced by a submaximal dose of K252a (100 nM)Figure 3
BDNF expressed in granule cells rescued the aberrant mossy fiber extension induced by a submaximal dose of 
K252a (100 nM). (A-C) Compared with control slices (A), K252a-treated slices infected with mock viruses showed an abnor-
mal distribution of mossy fibers (B). Meanwhile, the BDNF-expressing mossy fibers extended into the SL (C) in a manner simi-
lar to that observed in the control slices. The dotted line indicates the incision line made 4 days after transfection to adjust the 
axonal extension to the expression of proteins. (D and E) Mossy fiber distribution analyzed by a ratio distribution of the co-
expressed Venus in the CA3c (D) and CA3a (E) areas. *P < 0.05 and **P < 0.01; Tukey's test after analysis of variance (n = 7–9 
slices obtained from 4 independent experiments). SR: stratum radiatum, SP: stratum pyramidale, and SO: stratum oriens.
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cadherin-deficient mice have abnormal mossy fiber pro-
jection might be consistent with our hypothesis of the
underlying mechanism [25,26].

Alternatively, BDNF might induce the activation of recep-
tors for repulsive guidance factors secreted from subre-
gions other than the SL, such as the stratum radiatum and
stratum pyramidale. Semaphorin 3s [27], Semaphorin 6A
[28], and Slit-2 [29] function as repellents for mossy fib-
ers. BDNF may act as a key regulator of other molecules by
inducing and modulating their function.

The activity-dependent nature of BDNF [30] may be fun-
damentally associated with its neurobiologic functions.
Interestingly, Danzer et al. (2004) showed that BDNF
immunoreactivity is detected in mature presynaptic bou-
tons of mossy fibers, and that the number of BDNF-rich
presynaptic boutons is increased by pilocarpine-induced
neuronal activity [7]. In our overexpression experiments,
the artificially expressed BDNF would mimic that in

mature mossy fiber terminals, thus it is likely that endog-
enous BDNF has a paracrine effect on newly generated fib-
ers. It might be possible that the pathfinding effect of
BDNF is involved in the activity-dependent plasticity
underlying memory mechanisms. It would not, however,
directly and immediately contribute to these mechanisms
because the time course of mossy fiber pathfinding exam-
ined in this study (over several days) appears to be too
long and newly-originated mossy fibers require 2.5 weeks
to mature in adult mice [31]. Rather, the effect of BDNF
may be as a signal for new fibers to fasciculate and extend
further into the SL to form synapses with neurons that are
far from active BDNF-expressing synapses. This view is
supported by our finding that the passing fibers did not
form obvious synaptic varicosities on any of the BDNF-
expressing CA3 neurons (Fig. 4D). This mechanism
would ensure the emergence of new independent dentate
gyrus-CA3 circuits, which are hypothetically required to
effectively encode information similar to, but distinct
from, the preexisting circuits [32]. Dysregulation would

Overexpression of BDNF in CA3 pyramidal cells promotes mossy fiber pathfinding in the distal parts of the axonsFigure 4
Overexpression of BDNF in CA3 pyramidal cells promotes mossy fiber pathfinding in the distal parts of the 
axons. (A) The expression viruses, including the CaMKII promoter were injected locally in the CA3 cell layer (green circle). 
Biocytin crystals were placed on the granule cell layer (pink circle) to visualize mossy fibers. (B) In nontreated control slices, 
mossy fibers visualized by the biocytin labeling (magenta) were fasciculated, and CA3 cells infected with mock viruses were 
identified by the co-expression of Venus (green). (C and D) K252a-treated slices with mock (C) or BDNF (D) expression are 
shown in high magnification images of the CA3c (2: solid box in 1) or CA3a (3: dotted box in 1) area. D shows abnormal distri-
bution of mossy fibers in the CA3c area; these fibers began to accumulate in the CA3b area, which contained pyramidal cells 
overexpressing BDNF (green), and fasciculated tightly in the SL of the CA3a area. (E and F) Mossy fiber distribution estimated 
by biocytin labeling intensity in the CA3c (E) and CA3a (F) regions. *P < 0.05 and **, ##P < 0.01; Tukey's test after analysis of 
variance (n = 9 slices obtained from 4 independent experiments). SR: stratum radiatum, SP: stratum pyramidale, and SO: stra-
tum oriens.
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cause information overwriting, which might be a clue to
why schizophrenia has been related to BDNF reduction
[33,34]. Recent suggestions that the etiology of schizo-
phrenia may be due to adult neurogenesis [35] and subse-
quent mossy fiber guidance [36] seem to be consistent
with this hypothesis.

Conclusion
Our findings are the first to clarify the role of BDNF in
mossy fiber pathfinding; BDNF functions not as an
attractant cue but as a regulator, possibly acting in a para-
crine manner. This effect of BDNF may be as a signal for
new fibers to fasciculate and extend further to form syn-
apses with neurons that are far from active BDNF-express-
ing synapses. This mechanism would ensure the
emergence of new independent dentate gyrus-CA3 circuits
by the axons of new-born granule cells.

Methods
Organotypic cultures of hippocampal slices
Entorhino-hippocampal slices (300 μm thick) were pre-
pared as previously described [9]. In some slices, the
mossy fibers were cut with a scalpel after 4 DIV [37]. Slices
were cultured using a membrane interface technique (Mil-
licell-CM, Millipore, Bedford, MA) [38]. Cultures were fed
1 ml of culture medium consisting of 50% minimal essen-
tial medium (Sigma, St. Louis, MO), 25% horse serum
(Cell Culture Lab, Cleveland, OH), and 25% Hanks' bal-
anced salt solution containing 25 mM glucose, 50 units
ml-1 penicillin G, and 100 μg ml-1 streptomycin, and
maintained in a humidified incubator at 37°C in 5%
CO2. The medium, with or without K252a (Wako, Osaka,
Japan), was changed every 3.5 days.

Immunohistochemistry and histology
Cultured hippocampal slices were immersed in 4% para-
formaldehyde at 4°C for 4 h and treated with 0.3% Triton
X-100 for 12 h. After a 1-h incubation in 5% goat serum
at room temperature, rabbit anti-GFP antibody (1:1000;
Molecular Probes, Eugene, OR) or anti-BDNF antibody
(0.5 μg/ml, a generous gift from Amgen) in phosphate
buffered saline (PBS) containing 2% goat serum was
applied at 4°C for 24 h followed by Alexa Fluor 488 goat
anti-rabbit secondary antibody (1:500, Molecular Probes)
for 4 to 6 h, or biotinylated anti-rabbit secondary anti-
body (Vector Laboratories, Burlingame, CA) for 1 h at
room temperature. To visualize Venus signals in mossy
fibers, the TSA fluorescein system (PerkinElmer Life, Bos-
ton, MA) was used with 1-h incubation in avidin-biotin
complex solution (Vector Laboratories) following treat-
ment with anti-GFP antibody and quenching of endog-
enous peroxidase activity with H2O2 (0.3%) for 20 min.

For biocytin labeling, biocytin crystals were placed on the
granule cell layer of cultured slices 4 h before fixation.

These slices were fixed and permeabilized as for immuno-
histochemistry, and finally incubated with 10 μg/ml Texas
Red-X-conjugated streptavidin (Molecular Probes) in a
dark room at room temperature for 4 h. For Nissl staining,
slices were immersed in PBS containing 4% paraformalde-
hyde for 24 h, washed three times with PBS, treated with
0.1% Triton-X-100 for 60 min, washed, and then incu-
bated with NeuroTrace fluorescent Nissl (1:100 dilution;
Molecular Probes) for 6 h at room temperature, followed
by three rinses with PBS. All fluorescence signals were
observed using a MRC-1000 confocal imaging system
(Bio-Rad) with a 20× objective lens. Mossy fiber distribu-
tion was assessed by analyzing the EGFP or Venus signal
ratio in each CA3 subregion. The average intensities of the
fluorescent signals were quantified in five randomly
selected areas (10 μm × 10 μm) of each subregion. The
subregions were defined on the basis of the distance from
the stratum pyramidale (layer of soma), i.e., the SL is the
region within 70 μm from the stratum pyramidale, the
stratum radiatum is the region above the SL, and the stra-
tum oriens is beyond the stratum pyramidale. The signal
intensity was normalized using the sum of the raw inten-
sities of all four CA3 subregions.

Construction of the BDNF-expressing lentivirus vector
To produce the cDNA coding for Venus, a brighter GFP
derivative was provided as a kind gift from Dr. Miyawaki
[39] and modified by PCR. The P2A sequence, a porcine
teschovirus-1-derived 2A peptide sequence, includes a 2A
consensus signal, D (V/I) EXNPG-P. The 2A signal is asso-
ciated with a ribosomal skip in the peptide-bond forma-
tion between the glycine residue and the following
proline residue [16].

BDNF cDNA capped with the Kozak sequence was con-
nected in-frame with the Venus-P2A sequence through the
BamHI site. The resultant BDNF was logically capped by
PGST peptide at the N-terminus and the functionality of
the secretion signal was confirmed experimentally (Fig.
2A2). The final BDNF protein was tagged with human c-
Myc peptide, QKLISEEDLNGAA at the C-terminus, and its
activity has been confirmed [40]. The control mock virus
plasmid has a stop codon immediately downstream of the
BamHI site.

Lentivirus preparation
A lentiviral vector, FCGW, was a generous gift from Dr.
P.V. Osten [14]. Lentiviruses were produced by HEK293T
cells co-transfected with the expression vector (3 μg) and
three helper plasmids in a mixed package (9 μg; Invitro-
gen) using Lipofectamine 2000 (36 μl per 10-cm culture
dish). The medium was changed once after 18 to 24 h.
Seventy-two hours after transfection, the medium was
spun at 780 × g for 15 min, passed through a 0.45-μm fil-
ter and centrifuged at 83,000 × g for 90 min, then the pel-
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let was resuspended in 100 μl medium. The final titer was
approximately 108 PFU/ml. Dissociated hippocampal cul-
tures were exposed to the final suspension and then ana-
lyzed by immunocytochemistry for EGFP.

Microinjection of vector suspension into the hippocampal 
slice cultures
Micropipettes made from glass capillaries were autoclaved
and the tips were broken to obtain a diameter of approxi-
mately 0.5 μm. For each experiment, a pipette was filled
with a few microliters of lentiviral-vector suspension and
placed directly over the cell layer using a micromanipula-
tor (Narishige, Tokyo, Japan) and microejected using a
brief (10–20 ms) pulse of compressed N2 gas via a Picoin-
jector (PLI-100; Narishige; 3.5–4.0 p.s.i). The suspension
that was successfully delivered onto the slice was visually
confirmed under the microscope. The BDNF virus or
mock virus infection procedures were performed soon
after the slices were prepared. Because lentivirus-mediated
gene delivery expression plateaus 4 d after virus infection
(data not shown), mossy fibers were cut once at 4 DIV.
After the incision, a submaximal dose of K252a (100 nM)
was applied and left in place for 1 week, during which
mossy fiber regeneration was allowed to proceed [41].

Statistics
Data are expressed as means ± SEM values. Tests of vari-
ance homogeneity, normality, and distribution were per-
formed to ensure that the assumptions required for a
standard parametric ANOVA were satisfied. Statistical
analysis was performed by Student's t-test for two pair-
wise comparisons and one-way repeated-measures
ANOVA and post hoc Tukey's test for multiple pair-wise
comparisons. Significance was set at the P < 0.05 level.
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