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Abstract

proteins and the molecular basis for their specificity.

Calcium signalling plays a crucial role in the control of neuronal function and plasticity. Changes in neuronal Ca®*
concentration are detected by Ca**-binding proteins that can interact with and regulate target proteins to modify
their function. Members of the neuronal calcium sensor (NCS) protein family have multiple non-redundant roles in
the nervous system. Here we review recent advances in the understanding of the physiological roles of the NCS
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Introduction

Calcium has a major role in neurons as the trigger for
neurotransmitter release [1,2]. In addition many other
aspects of neuronal function are regulated by changes in
intracellular free Ca®>" concentration. Rapid exocytosis of
neurotransmitter-containing synaptic vesicles is acti-
vated by a local increase in Ca®* concentration at the
presynaptic active zone within 10 s of microseconds [3]
through the action of the Ca®* sensor synaptotagmin
[4]. Other Ca**-regulated events require more global
changes in neuronal Ca®* concentration, are activated
over longer time scales and the changes can persist for
minutes to days [5]. In part the specificity of the effects
of Ca®* on neuronal physiology is determined by the
magnitude, kinetics and spatial localisation of the Ca**
signal [6]. The transduction of changes in Ca** concen-
tration requires Ca”*-binding proteins and these can
contribute to the overall specificity of Ca®* signalling.
One well-characterised Ca>*-binding protein with neu-
ronal functions is the ubiquitous protein calmodulin
which binds Ca%* through its four EF-hand domains [7].
Other EF-hand containing proteins have been found to
be expressed in neurons and these contribute to the
diversity of the neuronal Ca** signalling repertoire.
These include two families known as the CaBPs/cal-
neurons [8-13] and the neuronal calcium sensor (NCS)
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family. The latter family are the subject of this review.
The NCS proteins have a wide range of physiological
functions in neurons and in the photoreceptor cells in
the retina. An emerging area is the recognition of the
importance of NCS protein signalling in neuronal dis-
ease [14-20].

A key issue regarding the NCS proteins is how they
can differentially affect specific aspects of neuronal func-
tion. NCS protein function is established by several fac-
tors determined by their intrinsic properties including
their ability to interact with and regulate different target
proteins. Several reviews on the NCS proteins have been
published [21-25] and here we will concentrate on
recent advances in the understanding of their physiolo-
gical roles and the underlying target protein interactions
that determine their specific functions.

Overview of the NCS protein family

The NCS proteins are encoded by 14 conserved genes in
mammals and their diversity is increased by the exis-
tence of splice variants that are likely to modify their
functions in ways yet to be fully determined [21,23].
The NCS family consists of NCS-1, hippocalcin, neuro-
calcin-8, VILIP1-3, recoverin, GCAP1-3 and KChIP1-4.
The core EF-hand containing regions of these proteins
are similar but they are largely distinguished by variable
N-terminal and C-terminal domains. Genetic studies in
various organisms have shown that loss of one of the
NCS proteins can result in a distinct, detectable pheno-
type suggesting that they do not overlap in function
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sufficiently for the loss to be compensated by another
family member or by calmodulin which can regulate
some of the same targets [23]. Recoverin and the
GCAPs have well-defined roles in the regulation of
phototransduction and are only expressed in the retina
[26,27]. The lack of redundancy of the other NCS pro-
teins could come from restricted expression in particular
classes of neurons but this is likely to be only a part of
the explanation as many neurons appear to express mul-
tiple NCS proteins. Other factors that contribute to
their non-redundancy include a higher Ca** sensitivity
than calmodulin suggesting that they respond to differ-
ent Ca®" signals. They have varied subcellular locations
through the post-translational modifications of myristoy-
lation [28,29] or palmitoylation [30] that allow constitu-
tive or alternatively Ca®'-dependent membrane
association. In addition, they have specific binding tar-
gets for regulation.

Physiological functions of the NCS proteins
Recoverin

As indicated above, recoverin has a characterised func-
tion in the retina [31] and indeed is only known to be
expressed in photoreceptors, retinal cone bipolar cells
and the pineal gland [32]. Recoverin’s physiological role
was suggested to be to regulate light sensitivity [31,33].
It does this through the direct inhibition of the retinal
rhodopsin kinase in a Ca®*-dependent manner
[32,34,35]. The normal phosphorylation of rhodopsin is
crucial for the switch-off of the light response in photo-
receptors [36]. A physiological role for recoverin in the
regulation of light sensitivity has been established
through study of mice where recoverin expression is
reduced or knocked-out [31,33]. Rhodopsin kinase is
recoverin’s main known target [35,37] although it has
also been found exert an additional, less characterized,
effect on light sensitivity apparently independently of
the kinase [38]. In addition it has been shown to be able
to recruit the Ca®*-binding protein caldendrin to mem-
branes [39]. Recoverin was the first of the NCS proteins
to be discovered [40] and has since been extensively
characterised from a biochemical perspective. The pre-
cise molecular basis for the inhibition of rhodopsin
kinase [37] has been established through structural ana-
lyses (see below).

GCAPs

The GCAPs [27,41] have role in light adaptation [42,43]
by activating or inhibiting retinal guanylyl cyclases
[44,45] at low or high Ca®* concentration respectively
[46]. The importance of the GCAPs is illustrated by the
fact that various mutations in GCAP1 in humans result
in cone dystrophies with photoreceptor degeneration
[47]. The physiological importance of the GCAPs in the
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retina has also been established through knock-out of
GCAP1 and GCAP2 in mice [42,48-50]. One key issue
is why multiple GCAPs are required for light adaption.
For example, GCAPs 1 and 2 are expressed in the same
photoreceptor cells. Expression of GCAP2 in mice lack-
ing GCAP1 and 2 did not result in full recovery of func-
tion indicating non-redundancy of function [50]. The
existence of multiple GCAPs appears to be related to a
need for sensors with differing Ca>* sensitivities to allow
responses to occur over a wide range of Ca®* concentra-
tions [27,51]. The structures of GCAPI 1, 2 and 3 have
been characterised [52-55] but the molecular details of
how they regulate guanylyl cyclases are yet to be
determined.

NCS-1

The other NCS proteins have been implicated in a wide
range of physiological functions in neuronal cells [23].
NCS-1 has been studied in various different organisms
as it is expressed from yeast to man. This has resulted
in it being implicated in many functional roles ranging
from regulation of neuronal ion channels, membrane
traffic, learning, neuronal growth and survival [23,25].
These functions appear to involve interaction of NCS-1
with multiple target proteins [17,56-59] many of which
are apparently specific for this member of the family
(Figure 1). Recent physiological studies have charac-
terised several new roles for NCS-1 working through
different pathways. Earlier work had suggested a role for
NCS-1 in regulation of neurotransmitter release [60-62],
voltage-gated Ca>* channels [63,64] and in short-term
synaptic plasticity [65]. More recently NCS-1 has been
shown to act in a pathway, involving interactions with
another Ca>" sensor PICK1, that mediates long-term
depression (LTD) in rat cortical neurons [66]. In the
mouse, NCS-1 has been implicated in exploratory beha-
viour and in the acquisition of spatial memory by regu-
lating the surface expression of dopamine D2 receptors
in the hippocampal dentate gyrus [67]. A study in Dro-
sophila has shown that the fly NCS-1 orthologue freque-
nin which regulates both neurotransmitter release [60]
and nerve terminal growth [68] does so through an
interaction (revealed genetically) with the voltage-gated
Ca®* channel cacophony [69]. This channel is the fly
equivalent of the mammalian P/Q-like Cav2.1 channel
which is also regulated by calmodulin [70] and the other
Ca2+—binding proteins VILIP-2 [71] and CaBP1 [72].
Overexpression of NCS-1 was demonstrated to induce
neurite sprouting and spinal cord regeneration [73].
This appeared to involve activation of the PI3K/Akt
pathway but it is not known whether NCS-1 directly
interacts with proteins of this pathway. Finally, recent
work has suggested that NCS-1 has a positive role in
increasing Ca®* signalling in cardiac cells through its
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Figure 1 An interaction map of the known binding partners of the NCS proteins. The NCS protein family members are shown in yellow
and binding partners in red with interactions directly with NCS proteins or between binding partners indicated. The edge colours indicate whether
the interaction are with the Ca’* -bound form (red) or the apo form (blue) or if this is not applicable (black). The binding partners and their
abbreviations are as follows: Actin, Alsin, AP1 (clathrin adaptor), AP2 (clathrin adaptor), ARF1 (ADP-ribosylation factor-1), Calden (Caldendrin), CAPS
(Ca? *-dependent activator protein for secretion), Cav1.2 (Ca 2+ channel), Cav2.1 (Ca”* channel), CALN (Calcineurin), Clathrin (Clathrin heavy chain),
CREB (cAMP responsive element binding protein), CREM, (CAMP response element modulator), CTBP1/2 (C-terminal binding protein 1), cytb5
(cytochrome b5), D2R (dopamine D2 receptor), DAN (differential screening-selective gene aberrant in neuroblastome), GalT2 (galactosyl transferase
2), GIuR6 (glutamate receptor 6), GRK1/2/6 (G protein-dependent receptor kinase 1/2/6), GUCY2A/2B/2D/2E (guanylate cyclase 2A/28/2D/2E), HINT
(histidine triad protein), ILIRAPLT (interleukin receptor accessory protein like-1), IP3R (inositol 1, 4, 5 trisphosphate receptor), Kv1.5 (potassium
channel), Kv4 (potassium channel), MLK2 (Mixed lineage kinase 2), NAIP (Neuronal apoptosis inhibitory protein), Nic a4b2 (nicotinic receptor
containing 4 a and 2 B subunits), NRT (NMDA receptor type 1), P2Y2R (purinergic receptor type 2Y2R), PDE (phosphodiesterase 1A), Pl4Klllb
(phosphatidylinositol-4-kinase IlIB), PICK1 (Protein interacting with C kinase 1), PINKT (PTEN-induced kinase), prdx3 (Peroxiredoxin 3), PSD95 (post-
synaptic density protein 95), PSEN1/2 (presenilin 1/2), ribeye (synaptic ribbon protein), S100b (S100 protein beta), SCAMC2 (Short calcium binding
mitochondrial carrier 2), TGFbR1 (transforming growth factor B receptor type 1), TRPC1/5 (transient receptor potential channel 1/5), TSHR (thyroid
stimulating hormone receptor), TTF-1 (Thyroid transcription factor 1), tubulin (o and B tubulin), ubc9 (Ubiquitin conjugating enzyme 9), VAMP2
(vesicle -associated membrane protein 2), VitDR (vitamin D receptor). Note that for simplicity we have used the name KChIP3 despite the fact that
several of the original descriptions of the interactions used the alternative terminology of DREAM or calsenilin (see main text).




Burgoyne and Haynes Molecular Brain 2012, 5:2
http://www.molecularbrain.com/content/5/1/2

interaction with the IP3 receptor [74,75]. It is not clear,
however, whether NCS-1 has a physiological role in reg-
ulating IP3 receptors in neurons.

Hippocalcin and VILIPs

Hippocalcin is expressed at highest levels in hippocam-
pal neurons [76,77] and hippocalcin-deficient mice show
an impairment in memory formation [78]. Hippocalcin
has been suggested to be involved in LTD in hippocam-
pal neurons by regulating endocytosis of the GluR2 class
of AMPA glutamate receptors based on a direct interac-
tion with the endocytotic clathrin adaptor AP2 [79].
More recently it has been shown to act via AP2 and the
post-synaptic protein PSD-95 in a pathway for LTD trig-
gered by muscarinic receptor activation [80]. Hippocal-
cin has also been suggested to regulate neuronal
function as the calcium sensor for the potassium chan-
nels that lead to hyperpolarisation known as the slow
after-hyperpolarisation currents (sAHP) [81,82]. The clo-
sely related NCS protein neurocalcin & also regulates the
sAHP [82]. Hippocalcin has a myristoyl switch that
allows its reversible membrane association on Ca**
binding [83]. This switch can be activated by Ca** influx
through synaptic NMDA receptors to result in rapid
translocation of hippocalcin into dendritic spines [84].
This translocation of hippocalcin may be important for
LTD or the activation of SAHP. The VILIPs that are
also closely related to hippocalcin may have other phy-
siological roles [24] through regulation of voltage-gated
Ca?* channels [71], nicotinic acetylcholine receptors
[85,86] or purinergic P2X2 receptors [87]. Recent struc-
tural analyses suggest that VILIP-1 may function as a
dimer [88,89]. VILIP-2 regulates the function of Cav2.1
calcium channels that are also regulated by calmodulin.
Calmodulin binding to the a-subunit of these channels
is required for both Ca®*-dependent facilitation and
inactivation of the channels [90,91]. In contrast, VILIP-2
increases facilitation but slows inactivation of the chan-
nels [71]. Recent work [92] has used calmodulin/VILIP-
2 chimeric proteins and has determined which domains
in VILIP-2 are responsible for the differing effects of
VILIP-2 compared to calmodulin. Distinct contributions
of the N and C-terminal regions of VILIP-2 to the regu-
lation of the channels were identified.

KChIPs/DREAM/calsenilin

The KChIP proteins were so named based on their abil-
ity to interact with the Kv4 family of A-type rapidly-
inactivating potassium channels [93]. One of the
KChIIPs, KChIP3 was originally discovered in 1998 as a
protein that bound to the presenilin proteins and was
named calsenilin [94]. The characterisation of a protein
that affects gene transcription through binding to a spe-
cific regulatory DNA motif (the downstream regulatory
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element or DRE) led to the identification of a human
protein that was named downstream regulatory element
antagonist modulator (DREAM) [95]. In the initial pub-
lication this protein appeared to have an alternative
start codon giving a novel 30 residue extension at the
N-terminus. This sequence was subsequently corrected
in the databases and it is clear that calsenilin, DREAM
and KChIP3 proteins are in fact identical. The contin-
ued use of all three names is potentially confusing and
so here we will refer to the protein as KChIP3. This is
for simplicity and also since KChIP3 is closely related to
KChIPs 1, 2 and 4 forming the KChIP sub-family of the
NCS proteins.

In addition to the four KChIPs originally identified
that are coded by 4 distinct genes there are multiple
splice isoforms expressed [96]. The majority of the
KChIP isoforms that have been examined regulate the
gating properties of Kv4 channels [93] and also stimu-
late their traffic through the secretory pathway to the
cell surface [93,97-99]. In contrast, certain isoforms of
KChIPs 2, 3 and 4 inhibit Kv4 channel traffic to the
plasma membrane due to the existence of an alternative
N-terminal inhibitory domain (the KIS domain) [100].
This hydrophobic sequence has been suggested to be a
trans-membrane domain [101] but structural characteri-
sation has shown that the N-terminal helix of KChIP4a
instead binds within the hydrophobic pocket of
KChIP4a to displace the N-terminus of Kv4 [102,103]
explaining its dominant inhibitory effect on Kv4 channel
traffic.

Recent work has suggested that KChIPs may also play
a role in the regulation of voltage -gated Ca®* channel
signalling. T-type (Cav3) Ca>" channels were found to
be present in a signalling complex containing Kv4 chan-
nels and Ca®* entry though the Cav3 channels modified
the gating of the Kv4 potassium channels. This effect
was mediated by KChIP3 as the Ca>* sensor and inter-
estingly this could not be replaced by KChIPs 1, 2 or 4
providing further evidence for specific actions of the dif-
ferent KChIPs [104]. In addition, to this study, it has
also been recently suggested that KChIP2 is a directly
interacting regulator of L-type (Cavl, 2) Ca®* channels
and that KChIP2 can increase channel density without
an effect on channel traffic [105].

The multiple possible roles of KChIP3/calsenilin/
DREAM that gave rise to the independent identifications
have been supported by studies in KChIP3 knock-out
mice [106,107] It is clear that KChIP3 regulates expres-
sion of multiple genes in addition to its other cellular
roles [108]. The gene regulatory function (DREAM)
involves in part its direct interaction with the DNA DRE
motif but growing evidence has shown its interaction
with several co-repressor proteins involved in gene regu-
lation [109-111].
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The interaction of KChIP3 (calsenilin) with the prese-
nilins [94] has been of interest given the importance of
mutations in the presenilins in familial forms of Alzhei-
mer’s disease [112]. The full significance and the physio-
logical relevance of the interaction of KChIP3 with the
presenilins remains to be established, however, although
both earlier [113] and more recent work has suggested
an important role in Ca®" signalling [114]. In addition, it
has been suggested that the interaction of KChIP3/calse-
nilin could regulate the processing function of preseni-
lin/y-secretase [115,116].

Further analysis of transgenic mice has identified addi-
tional physiological neuronal roles for KChIP3. From
two independent studies on the knock-out mouse there
is evidence for an enhancement of learning (contextual
fear memory) in the absence of KChIP3 [117,118]. One
study found an increase in long-term potentiation (LTP)
in the hippocampus of the knock-out mice [117]. In a
study of mice expressing a Ca>*-insensitive active
mutant form of DREAM learning was impaired consis-
tent with the knock-out mouse studies. In contrast to
the knock-out mouse data however no effect on LTP
was observed but instead LTD was reduced [119]. The
effect of DREAM on LTD was suggested to be due to
an interaction with the post-synaptic protein PSD-95
that could affect NMDA receptor function [119].
Another study has identified a direct interaction of
KChIP3 with the NR1 subunit of the NMDA receptor
[120]. This interaction inhibits the surface expression of
NMDA receptors and could contribute to its inhibitory
effect on learning and memory. Another important role
for KChIP3 in neuronal physiology has come from other
studies of the mice expressing the Ca**-insensitive con-
stitutively active mutant. This work has identified a
requirement for KChIP3 in central nervous system
mechanisms of pain sensation and this involved the
action of BDNF (brain-derived neurotrophic factor)
[121].

A role for KChIP1 in synaptic plasticity and behaviour
has also been revealed from the study of a mouse
KChIP1 knock-out. KChIP1 was found to be expressed
at high levels in GABAergic interneurons [122]. In the
absence of KChIP1, abnormalities in GABAergic neuro-
transmission and an increase in anxiety-related beha-
viours was identified [123]. In contrast to the positive
role of KChIP1 in stimulating traffic of Kv4 channels,
the KChIP1 knock-out study found an increase in potas-
sium channel density which could be related to an inhi-
bitory effect of KChIPs that has been observed for
traffic of Kv1.5 potassium channels to the plasma mem-
brane [124].

Apart from the distinct effects of some KChIP iso-
forms on Kv4 channel traffic noted above there is rela-
tively little information on why there are so many of
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them (potentially at least 16 isoforms [96]). One study
detected a specific effect of over-expressed KChIP3
compared to single isoforms of KChIP1, 2 and 4 on Ca®
" signalling and neurotransmitter exocytosis [98]. There
is evidence that different classes of neurons express dif-
ferent subsets of KChIP proteins [125,126]. One recent
study showed that KChIPs 2, 3 and 4 can all contribute
to Kv4 channel function in the same mouse cortical pyr-
amidal neurons [127]. In contrast, another study found
that Kv4 potassium currents in hippocampal interneur-
ons were largely dependent on only KChIP1 [128].
Another possible clue explaining the reason for multiple
KChIPs may the existence of differing neuronal signal-
ling complexes involving Kv4 channels and KChIPs
[104,129]. It is unclear whether the KChIP isoforms
have specific functions due to interaction with distinct
target proteins. An increasingly large number of targets
are being identified for KChIP3 [130] but less is known
about the targets of the other KChIPs (Figure 1).

Structural insights into NCS protein function and
target specificity

The structures of a number of NCS protein family
members have been solved by the use of X-ray crystallo-
graphy or NMR spectroscopy. These variously include
structures of apo and Ca** -bound forms with or with-
out N-terminal myristoylation [131]. While the NCS
proteins have similar overall molecular structures there
are differences that provide clues to their specificity of
function and more specifically their target protein inter-
actions. They all possess four EF-hand domains but in
each case EF hand 1 is inactive in binding divalent
cations. The Ca®*-bound forms of the NCS proteins
either have 3 bound Ca*>* ions or in the case of reco-
verin [132], KChIP1 [133,134] and KChIP3 [135] have 2
bound Ca®* ions and these proteins differ in which EF
hands are active. Many but not all of the NCS proteins
are N-terminally myristoylated to allow membrane asso-
ciation and the use of the myristoylation confers differ-
ent properties [136,131]. The structurally most
extensively characterised NCS protein is recoverin. This
protein has a well defined Ca®*/myristoyl switch
mechanism in which the myristoyl group is sequestered
in the Ca®" free state and is flipped out on Ca®* binding
to allow membrane association [132,137]. A dynamic
Ca®*/myristoyl switch mechanism allowing reversible
membrane association has been demonstrated in live
cell studies for hippocalcin [28,83,84] and the VILIPs
[138,139]. In contrast, NCS-1 appears to have a solvent
exposed myristoyl group that drives its constitutive
membrane association [28,29] although it does dynami-
cally cycle between the membrane and cytosol [18]. A
further important aspect of the myristoyl group is that it
is not sequestered identically in all characterised
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structures [53,132,140] and can affect the overall protein
structure and stability [55,141]. An additional aspect of
the NCS proteins that may be crucial for the specificity
of target interactions is that they have a very variable
distribution of charged residues particularly on their C-
terminal halves [131].

Insight into the molecular basis of NCS protein speci-
ficity has come from structural characterisation of NCS/
target complexes (Figure 2). The structures have been
solved for the complex of recoverin with a rhodopsin
kinase fragment [37], the frequenin/Pikl complex from
Saccharomyces cerevisiae and Schizosaccharomyces
pombe [140,142] and a complex of KChIP1 with the N-
terminus of the Kv4.3 channel [143,144]. Additional
information has also come from the structure of
KChIP4a, the role of which is to inhibit fast inactivation
of the Kv4 channel and to reduce its traffic to the
plasma membrane through its specific K" channel inac-
tivation suppressor (KIS) domain [100,97]. This struc-
ture showed [102] that the N-terminal KIS domain is
sequestered in the hydrophobic groove that in KChIP1
is involved in interaction with the Kv4 channel and can
thereby compete off this interaction [143,144]. The con-
sequence is that unlike KChIP1, KChIP4a would only be
able to interact with Kv4 through the additional site 2
interaction identified for KChIP1/Kv4.3 [143,144]. In
addition, a model has been generated for the interaction
of NCS-1 with dopamine D2/D3 receptors [145]. NCS-1
regulates the internalisation of D2 and D3 receptors
through interaction with the short cytoplasmic C-termi-
nus of the receptor [59]. A synthetic peptide based on
this sequence directly binds to NCS-1 [145,146] allowing
characterisation of the interaction by use of NMR. The
key features that have emerged from these studies are
the importance of an exposed hydrophobic groove lined
by conserved hydrophobic residues for binding o.-helical
regions of the target protein, the importance of non-
conserved residues in specific target contacts and the
differential role of the NCS protein C-terminus in target
interactions.

All of the characterised interactions shown in Figure 2
involve a-helix binding within a hydrophobic groove in
the N-terminal half of the NCS protein. In the case of
frequenin [140,142] and predicted for NCS-1 [145], two
a-helices are able to bind to separate hydrophobic pock-
ets in a much longer exposed cleft. The exposure of the
C-terminal part of the groove would require significant
movement of the C-terminal o-helix of the NCS protein
[142,145]. In a recent paper is has been proposed that
the C-terminus of NCS-1 binds directly to the hydro-
phobic groove as a mimic of the target ligand to stabi-
lise the structure of NCS-1 [147]. A movement of the
C-terminal H10 helix of KChIP1 was observed in the
KV4.3 bound structure [143,144] compared to the
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Figure 2 Structures of NCS proteins showing interactions
within the exposed hydrophobic groove. (A) Structure of Ca’
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*-bound bovine recoverin with bound N-terminal fragment of
rhodopsin kinase including residues 1-25 ([37]; PDB, 2194). Recoverin
is shown in space-filling representation and the rhodopsin kinase is
shown in yellow. The rhodopsin kinase fragment forms an a-helix
that is embedded in an N-terminal hydrophobic pocket of
recoverin. The asterisk indicates the position of the C-terminus of
recoverin. (B) Structure of Ca’*-bound human KChIP1 showing the
binding of the N-terminal residues 3-27 of Kv4.3 ([143,144]; PDB,
212N). KChIP1 is shown in space-filling representation and the Kv4.3
fragment which forms an a-helix shown in yellow is embedded in a
hydrophobic groove running across KChiP1. An additional
interaction site of Kv4.3 with helix H2 of KChIP1 is omitted for
clarity. The asterisk indicates the position of the C-terminus of
KChIP1. (O) Structure of of Ca’"-bound mouse KChIP4a ([102]:PDB,
3DD4) with the structure shown in space-filling representation apart
from the N-terminal residues 1-23 which are shown in yellow. The
N-terminus forms an a-helix which is embedded within the N-
terminal part of the exposed hydrophobic groove of KChIP4a. The
asterisk indicates the position of the C-terminus of KChIP4a. (D)
Structure of of Ca”*-bound S. cerevisiae Frg1 with bound Pik1(121-
175) ([142];PDB, 2JU0) the structure of Frgl is shown in space-filling
representation and the Pik1 fragment in yellow. Pik1 forms two a.-
helices joined by a loop and the helices are bound to the N- and
C-terminal parts of a large hydrophobic groove running across Frgl.
The asterisk indicates the position of the C-terminus of Frql. (E)
Model for the structure of of Ca**-bound human NCS-1 with two
bound molecules of the C-terminal peptide of the D2/D3 receptor.
The structure of NCS-1 derived from PDB 1G8I[149] is shown in
space-filling representation and the D2/D3 peptides in yellow. The
two peptides are bound to the N- and C-terminal parts of the large
hydrophobic groove running across Frql. The asterisk indicates the
position of the C-terminus of NCS-1.

unbound form of KChIP1 [134] that would allow the
single o-helix of Kv4.3 to interact with hydrophobic
residues more C-terminal than is the case for the reco-
verin/rhodopsin kinase complex. (Note that Kv4.3 also
makes a second contact with the H2 helix of KChIP1
that is not shown in Figure 2[143,144]). In the reco-
verin/rhodopsin kinase complex the C-terminal helix of
recoverin occludes the hydrophobic cleft and indeed
residues in the C-terminus are crucial for the interaction
with the target [148]. From the structures available it is
possible to see how a similar mechanism for target
interaction through binding of a target a.-helix into an
exposed hydrophobic cleft has been modified in each
protein to generate high specificity for target binding.

Conclusions and Future Directions

There is an increasing understanding of the importance
and diverse functional roles of the NCS proteins in
transducing neuronal Ca®" signals. It is clear that addi-
tional roles will continue to emerge. Additional analysis
of the protein targets for the NCS proteins and the
structural characterisation of these interactions will
allow us to further understand the molecular basis for
the specificity of the NCS protein function. In addition,
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further study will be required to fully define the impor-
tance of NCS protein signalling, or disorders in this sig-
nalling, in neuronal disease.
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