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Abstract

Background: Fragile X syndrome is caused by lack of fragile X mental retardation protein (FMRP) due to silencing
of the FMR1 gene. The metabotropic glutamate receptors (mGIuRs) in the central nervous system contribute to
higher brain functions including learning/memory, mental disorders and persistent pain. The transcription factor
cyclic AMP-responsive element binding protein (CREB) is involved in important neuronal functions, such as synaptic
plasticity and neuronal survival. Our recent study has shown that stimulation of Group | mGluRs upregulated FMRP
and activated CREB in anterior cingulate cortex (ACC), a key region for brain cognitive and executive functions,
suggesting that activation of Group | mGIuRs may upregulate FMRP through CREB signaling pathway.

Results: In this study, we demonstrate that CREB contributes to the regulation of FMRP by Group | mGluRs. In ACC
neurons of adult mice overexpressing dominant active CREB mutant, the upregulation of FMRP by stimulating
Group I mGIluR is enhanced compared to wild-type mice. However, the regulation of FMRP by Group | mGluRs is
not altered by overexpression of Ca®*-insensitive mutant form of downstream regulatory element antagonist
modulator (DREAM), a transcriptional repressor involved in synaptic transmission and plasticity.

Conclusion: Our study has provided further evidence for CREB involvement in regulation of FMRP by Group |
mGluRs in ACC neurons, and may help to elucidate the pathogenesis of fragile X syndrome.
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Background

Fragile X syndrome, the most common cause of inher-
ited mental retardation and autism spectrum disorders,
is caused by mutations of the FMRI gene that encodes
the fragile X mental retardation protein (FMRP) [1-9].
EMRP, an mRNA binding protein, is involved in activity-
dependent synaptic plasticity through regulation of local
protein synthesis at synapses [2,7,9-16]. It normally
functions as a repressor of translation of specific mnRNAs
[10,15,17-19]. The abnormal functions of Group I
mGluR-dependent  synaptic  plasticity have been
observed in hippocampus of Fmrl knockout (KO) mice
[16,17,20-23]. It is believed that the protein synthesis
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downstream of Group I mGluRs are exaggerated due to
the lack of FMRP in fragile X syndrome [8,17,21,24].
The anterior cingulate cortex (ACC) is important for
cognitive learning, fear memory and persistent pain [25-
31]. Previous studies have shown that trace fear memory
is impaired in Fmrl KO mice, accompanied by alterations
in synaptic plasticity in ACC, suggesting that the dysfunc-
tion of ACC due to lack of FMRP may be responsible for
certain types of mental disorders in fragile X syndrome
[27,32]. The mGluRs in ACC contribute to activity-
dependent synaptic plasticity and behavioral fear memory
[33,34]. The regulation of FMRP by mGluRs has been
mostly studied in hippocampal neurons [11,17,21,35,36].
Our recent study has found that activation of Group I
mGluRs regulates the expression of FMRP in ACC neu-
rons and activates cyclic AMP-responsive element binding
protein (CREB) [37,38], a transcriptional factor which
plays many functional roles in central nervous system,
such as neuronal survival, synaptic plasticity, learning and
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memory [39-45]. These findings indicate possible roles of
CREB in linking mGluRs to FMRP in ACC. Loss of this
signaling pathway may contribute to the pathogenesis of
fragile X syndrome.

In the present study, we have demonstrated that CREB
is involved in the regulation of FMRP by Group I mGluRs.
In cingulate cortex from transgenic mice overexpressing
dominant active CREB (Y134F) mutant which displays a
higher affinity with cAMP dependent kinase (PKA) com-
pared to wild-type (WT) CREB [46,47], we found the
upregulation of FMRP by stimulating Group I mGIuR was
enhanced compared to that of WT mice. By contrast, the
regulation of FMRP by Group I mGluRs was not affected
by overexpression of Ca>* insentive mutant form of down-
stream regulatory element antagonist modulator
(DREAM), a transcriptional repressor involved in synaptic
plasticity, learning and memory [48-50]. We propose that
CREB is the key transcription factor in regulation of
EMRP by Group I mGluRs in ACC neurons.

Results

Overexpression of dominant active CREB enhances the
regulation of FMRP by group | mGluRs in the ACC
neurons

Phosphorylated CREB (pCREB) binds to cAMP re-
sponse element (CRE) site in gene promoters and acti-
vates gene transcription [41,42,45,51,52]. It has been
reported that the FMRI gene promoter contains the CRE
site [53,54]. Our recent study had found that (RS)-3,
5-Dihydroxyphenylglycine ((RS)-3, 5-DHPG) treatment
could upregulate FMRP and increase the pCREB levels in
ACC slices, suggesting that the regulation of FMRP by
Group I mGluRs in ACC neurons likely occurs through
CREB activation [37,38].

Overexpression of dominant active CREB mutant in
the forebrain could positively regulate memory consoli-
dation and enhance memory performance by upregulat-
ing the expression of Brain derived neurotrophic factor
(BDNF) [47], which is well known as a CREB target gene
[40,42,55]. To further investigate whether CREB is
involved in the upregulation of FMRP caused by stimu-
lating Group I mGluRs, we then tested the expression of
FMRP induced by the Group I mGIuR agonist DHPG
(100 uM, 30 min) treatment in ACC slices from mice
overexpressing CREB. By Western blot, we found that
there was no difference in the basal levels of FMRP in
ACC slices between WT and CREB overexpression mice
(P>0.05, compared with WT mice, n=5, Figure 1A).
DHPG treatment could increase expression of FMRP in
ACC slices; the increase of FMRP was further enhanced
in ACC slices from mice overexpressing CREB com-
pared to WT mice (198 +11% and 248 + 14% of the WT
control levels for WT and CREB overexpression mice,
respectively. In two-way ANOVA analysis, for genotype,
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F=1339, P<0.01; for treatment, F=254.87, P<0.01;
genotype X treatment, F=8.26, P<0.05; n=5 for each
group, Figure 1B). The data indicates that overexpres-
sion of CREB can enhance the upregulation of FMRP
induced by Group I mGluR activation. It provides fur-
ther evidence that CREB is involved in the regulation of
EMRP by Group I mGluRs in ACC neurons.

Overexpression of Ca”*-insensitive DREAM does not affect
the regulation of FMRP by group | mGluRs in the ACC
neurons

Since transcriptional repressor DREAM interacts with
CREB in a Ca** dependent manner and prevents the
recruitment of CREB-binding protein (CBP) blocking
CRE-dependent gene transcription [48,56], we next
checked whether DREAM might be involved in the
regulation of FMRP by Group I mGluRs through CREB
signaling pathway. To explore the role of DREAM in
the upregulation of FMRP by stimulating Group I
mGluRs, we have taken the advantage of transgenic mice
overexpressing a Ca’*-insensitive DREAM mutant
(TgDREAM) [49,50]. The TgDREAM mice could de-
velop normally and did not exhibit any abnormalities in
brain structures. However, overexpression of mutant
DREAM impaired NMDA receptor-mediated synaptic
plasticity and contextual fear memory [50].

We next tested the effect of DHPG (100 M, 30 min)
treatment in ACC slices from TgDREAM mice. Import-
antly, no difference in the basal levels of FMRP in ACC
slices was observed between WT and TgDREAM mice
(P>0.05, compared with WT mice, n=5, Figure 1C).
Furthermore, the increase of FMRP after DHPG treat-
ment was not affected in ACC slices from TgDREAM
mice compared to WT mice (199 + 10% and 201 + 9% of
the WT control levels for WT and TgDREAM mice, re-
spectively. In two-way ANOVA analysis, for genotype,
F=0.10, P=0.75; for treatment, F=249.81, P<0.01; for
genotype X treatment, F=0.001, P=1.00; n=5 for each
group, Figure 1D). The data indicate that overexpression
of Ca**-insensitive mutant form of DREAM does not
affect the upregulation of FMRP induced by Group I
mGluR activation, suggesting that DREAM might not be
involved in the CREB-dependent regulation of FMRP by
Group I mGluRs in ACC neurons.

Putative CREs in the FMR1 promoter

To identify conserved sequences, 20 kb of mouse gen-
omic sequence including the FMRI transcription start
site (TSS) was aligned among multiple mammalian spe-
cies using the UCSC Genome browser (Figure 2).
Sequences of multiple mammalian species were then
scanned for matches to the consensus sequence of CRE
(TGACGTCA). Two putative CREs (upstream CRE,
-48 ~ —45; downstream CRE, +106 ~ +113) were found in
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Figure 1 Upregulation of FMRP by Group | mGluRs was enhanced in ACC from CREB mutant mice, whereas it was not affected in

WT TgDREAM WT TgDREAM

TgDREAM

DHPG

Control

transgenic mice overexpressing a Ca®*-insensitive DREAM mutant (TgDREAM). A, The basal levels of FMRP in ACC slices of CREB mutant
mice were not affected. B, The increase of FMRP after treatment with Group | mGIuR agonist DHPG (100 uM) for 30 min, was enhanced in ACC
slices from CREB mutant mice, as compared to wild-type (WT) mice. Representative Western blot (top) and quantification data (bottom) of FMRP
are shown for the corresponding treatments. C, The basal levels of FMRP in ACC slices of TgDREAM mice were not affected. D, The increase of
FMRP after treatment with Group | mGIuR agonist DHPG (100 puM) for 30 min, was not changed in ACC slices from TgDREAM mutant mice, as
compared to wild-type (WT) mice. Representative Western blot (top) and quantification data (bottom) of FMRP are shown for the corresponding
treatments. Data were normalized by WT control values. ** P<0.01, compared to control mice; # P < 0.05, compared to WT DHPG treatment. n=5

mice for each group.

the highly conserved regions across multiple mammals
(Figure 2A). The upstream putative CRE has been
reported as a potential CRE in human FMRI promoter
[53,54]. Comparisons of putative CRE sequences among
mammalian species are shown in Figure 2B. These data
support our finding that the FMRI is a target gene of
CREB.

Discussion

Our previous studies have shown that FMRP is required
for the physiological function of ACC [25,27,57], the
mGluRs in ACC may contribute to the activity-

dependent synaptic plasticity and fear memory [33,34].
Recently, we have provided the direct biochemical evi-
dence that activation of Group I mGluRs upregulates
FMRP in ACC neurons of adult mice; the upregulation
of FMRP by Group I mGluRs occurs at the transcrip-
tional level, stimulation of Group I mGluRs induced the
phosphorylation of CREB in ACC neurons [37,38]. In
this study, we provided further evidence that CREB con-
tributes to the upregulation of FMRP induced by stimu-
lating Group I mGluRs and may act as a key signaling
molecule linking Group I mGluRs and FMRP in cingu-
late cortex.
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Figure 2 Putative CREs in the FMRT promoter. A, Conserved regions among multiple placental mammalian species were identified by UCSC
Genome browser. Two putative CREs are indicated with yellow. TSS; transcription start site. B, Two putative CREs are highly conserved across
species (mouse, rat, human, cow, opossum). Conserved CRE sequences are highlighted in yellow.

CREB is a transcriptional factor that plays important
roles in synaptic plasticity [40-45,52]. The activity of CREB
is regulated by its phosphorylation; pCREB binds to the
CRE site within the gene and activates the gene transcrip-
tion [40,42,45,51,52]. Previous and our current studies have
shown that there is the CRE site in FMRI promoter, and
implicated CREB in the regulation of the FMRI gene tran-
scription in neural cells (Figure 2) [53,54]. Our recent stud-
ies found that the Group I mGluR activation upregulates

FMRP at the transcriptional level in ACC neurons; the
upregulation of FMRP is accompanied by the phosphoryl-
ation of CREB (Ser133); Ca®*-stimulated adenylyl cyclase 1
(AC1), PKA and Ca®*/Calmodulin-dependent protein kin-
ase IV (CaMKIV) contribute to regulation of FMRP by
Group I mGIuR probably through CREB activation [37,38]
(see Table 1). These findings supported that CREB acts as
a transcriptional factor for Group I mGluR-dependent
upregulation of FMRP in the ACC neurons.
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Table 1 Studies on signaling pathway of CREB activation by Group | mGluRs in cingulate cortex

Signaling molecules Manipulations Effects on CREB phosphorylation induced by DHPG References

AC1 ACT knockout Reduced 38

PKA PKA inhibitor Reduced 38

CaMKIV CaMKIV knockout Reduced 38
CaMK inhibitor Reduced 37
CaMKIV over expression Enhanced 37

In this study, we have shown that the upregulation of
EMRP induced by Group I mGluR agonist DHPG DHPG
is enhanced in ACC slices from mice overexpressing dom-
inant active CREB (Y134F) mutant. This finding further
supports that CREB is critical for the regulation of FMRP
by Group I mGluRs in ACC neurons. We also found that
overexpression of dominant active CREB mutant does not
affect the basal levels of FMRP, although it enhanced the
upregulation of FMRP by stimulating Group I mGluRs in
ACC slices. These results may reflect less synaptic activity
at baseline condition, or suggest that CREB, which can be
shared by many different signaling pathways, may specific-
ally contribute to the upregulation of FMRP by stimulating

Group I mGluRs (see Figure 3 for the model). It is possible
that long term expression of dominant active CREB in the
mice may cause some developmental or secondary changes
in ACC of transgenic mice. However, we think that the ef-
fect of CREB mutant on regulation of FMRP by Group I
mGluRs cannot be simply attributed to developmental or
secondary changes in ACC since the roles of CREB have
been further supported by other genetic and pharmaco-
logical evidence from our previous studies [37,38].
DREAM, a multifunctional Ca**-binding protein, con-
tributes to synaptic plasticity, and behavioral learning
and memory. As a transcriptional repressor, it can affect
CRE-dependent gene transcription by preventing the

Figure 3 The signaling pathway for CREB in the regulation of FMRP by Group | mGluRs in ACC neurons. Stimulation of mGIuR1/5 triggers
the Ca”* release from intracellular calcium stores by IP3 and Ca”* influx from L-VDCCs through membrane depolarization. The increase of Ca”*
leads to activation of Ca**-calmodulin (CaM) dependent pathways, including Ca®* and CaM stimulated AC1-cAMP dependent protein kinase
(PKA) and CaMKIV. PKA and CaMKIV then phosphorylates CREB. Phosphorylated CREB (pCREB) initiates the CREB-dependent transcription of Fmr1
gene and upregulates FMRP in the cytoplasm. The mutant CREB (Y134F) contributes to transcription of Fmr1 gene, whereas DREAM may not be
involved in Fmr1 gene expression. FMRP may interact with its interactors and modulate neuronal functions in ACC.

ACC synapse

Synaptic activity
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recruitment of CBP by pCREB [48,49,56]. In this study,
we found the upregulation of FMRP by stimulating
Group I mGluRs was not affected in ACC slices from
mice overexpressing Ca**-insensitive mutant form of
DREAM. The data indicates that overexpression of this
mutant form of DREAM does not affect basal expression
or CREB-dependent FMRP induction by Group I
mGluRs. Since the overexpression of TgDREAM has
been associated with the repression of different target
genes [49,58,59], these results suggest that DREAM
might not be involved in the regulation of the FMRP in
ACC neurons.

Conclusion

We have demonstrated that CREB is critical for regula-
tion of FMRP by Group I mGluRs in ACC neurons by
using genetic approaches. Our study has provided fur-
ther evidence that CREB is involved in regulation of
FMRP by Group I mGluRs in cingulate cortex, and may
help to further elucidate the molecular and cellular
mechanisms underlying fragile X syndrome.

Materials and methods

Animals

Adult male C57Bl/6 mice were used in most of experi-
ments. The transgenic mice overexpressing dominant
active mutant CREB (Y134F) or Ca®" insentive DREAM
were generated and maintained as reported previously
[47,50]. All mice were housed under a 12:12 light cycle
with food and water provided ad libitum. All mouse pro-
tocols are in accordance with NIH guidelines and
approved by the Animal Care and Use Committee of
University of Toronto.

Drugs and antibodies

(RS)-3, 5-DHPG was purchased from Tocris Bioscience
(Ellisville, MO). phosphatase inhibitor cocktail 1 and 2
were purchased from Sigma-Aldrich (St. Louis, MO).
The anti-FMRP antibody, horseradish peroxidase-linked
goat anti-mouse IgG and goat anti-rabbit IgG for West-
ern blot were purchased from Chemicon International
(Temecula, CA). The anti-phospho-threonine antibody,
anti-CREB antibody and anti-phosph CREB antibody
were purchased from Cell Signaling Technology (Dan-
vers, MA). The anti-actin antibody was from Sigma-
Aldrich (St. Louis, MO).

Brain slice preparations

Mice were anesthetized with 2% halothane and brain
slices (300 pm) containing ACC were cut at 4°C using a
Vibratome, in oxygenated artificial cerebrospinal fluid
[ACSF; containing the following (in mM): 124 NaCl, 4
KCl, 26 NaHCO3, 2.0 CaCl2, 1.0 MgSO,4, 1.0 NaH,PO,,
10 D-glucose, pH 7.4]. The slices were slowly brought to
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final temperature of 30°C in ACSF gassed with 95%
05/5% CO, and incubated for at least 1 hour before
experiments. Slices then were exposed to different
compounds of interest for the indicated times and snap
frozen over dry ice. For biochemical experiments, the
ACC regions were microdissected and sonicated in ice-
cold homogenization buffer containing phosphatase
and protease inhibitors.

Western blot analysis

Western blot was conducted as previously described
[25,38]. The brain tissues were dissected and homoge-
nized in lysis buffer containing 10 mM Tris—HCI (pH
7.4), 2 mM EDTA, 1% SDS, 1X protease inhibitor cock-
tail, and 1X phosphatase inhibitor cocktail 1 and 2. Pro-
tein concentration was measured by Bradford protein
assay (Bio-Rad, Hercules, CA). Electrophoresis of equal
amounts of total protein was performed on NuPAGE 4-
12% Bis-Tris Gels (Invitrogen, Carlsbad, CA). Separated
proteins were transferred to polyvinylidene fluoride
membranes (Pall Corporation, East Hills, NY) at 4°C for
analysis. Membranes were probed with 1:3000 dilution of
anti-FMRP, or 1:1000 dilution of anti-phospho-CREB
(Ser133) and anti-CREB antibodies. The membranes were
incubated in the appropriate horseradish peroxidase-
coupled secondary antibody diluted 1:3000 for 2 h followed
by enhanced chemiluminescence (ECL) detection of the
proteins with Western Lightning Plus-ECL (PerkinElmer
Life and Analytical Science Inc., Waltham, MA) according
to the manufacturer’s instructions. To verify equal loading,
membranes were also probed with 1:3000 dilution of anti-
actin antibody. The density of immunoblots was measured
using NIH Image] program.

Data analysis

All data were presented as the mean + S.E.M. Statistical
comparisons were performed by paired ¢-test or two-way
ANOVA. In all cases, P<0.05 is considered statistically
significant.
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