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Abstract

Background: The dysbindin-1 gene (DTNBP1: dystrobrevin binding protein 1) is a promising schizophrenia susceptibility
gene, known to localize almost exclusively to neurons in the brain, and participates in the regulation of neurotransmitter
release, membrane-surface receptor expression, and synaptic plasticity. Sandy mice, with spontaneous Dtnbp1 deletion,
display behavioral abnormalities relevant to symptoms of schizophrenia. However, it remains unknown if dysbindin-1
gain-of-function is beneficial or detrimental.

Results: To answer this question and gain further insight into the pathophysiology and therapeutic potential of
dysbindin-1, we developed transgenic mice expressing human DTNBP1 (Dys1A-Tg) and analyzed their behavioral
phenotypes. Dys1A-Tg mice were born viable in the expected Mendelian ratios, apparently normal and fertile. Primary
screening of behavior and function showed a marginal change in limb grasping in Dys1A-Tg mice. In addition,
Dys1A-Tg mice exhibited increased hyperlocomotion after methamphetamine injection. Transcriptomic analysis
identified several up- and down-regulated genes, including the immediate-early genes Arc and Egr2, in the prefrontal
cortex of Dys1A-Tg mice.

Conclusions: The present findings in Dys1A-Tg mice support the role of dysbindin-1 in psychiatric disorders. The fact
that either overexpression (Dys1A-Tg) or underexpression (Sandy) of dysbindin-1 leads to behavioral alterations in mice
highlights the functional importance of dysbindin-1 in vivo.

Keywords: Dysbindin, DTNBP1, Dystrobrevin binding protein 1, Psychiatric disorder, Schizophrenia, Transgenic mice,
Behavior, Methamphetamine, Phencyclidine, Immediate-early gene
Background
Dysbindin-1 (dystrobrevin binding protein 1) is an evo-
lutionary conserved 40-kDa coiled-coil-containing pro-
tein that binds to dystrobrevin and localizes exclusively
to neurons in the brain [1]. Dysbindin-1 has been shown
to participate in biogenesis of lysosome-related organ-
elles complex 1, which regulates trafficking to lysosome-
related organelles [2], regulation of neurotransmitter
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release [3-5], membrane surface expression of glutamate
NMDA [6] and dopamine D2 [7,8] receptors, and synap-
tic plasticity [6,9].
Genetic variations in the human dysbindin-1 gene

(DTNBP1) have been shown to be associated with
schizophrenia [5,10], bipolar disorder [11], and metham-
phetamine (METH) psychosis [12], as well as neurocogni-
tive functions in healthy subjects [13,14]. In postmortem
brain from schizophrenic patients, decreased dysbindin-1
expression has been demonstrated in the prefrontal cortex
[15], cerebral cortex [16], and intrinsic glutamatergic ter-
minals of the hippocampal formation [17].
Sandy mice completely lack dysbindin-1 protein be-

cause of spontaneous deletion of introns 5–7 of the
Dtnbp1 gene in DBA/2 J mice [2]. These mice display a
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variety of behavioral abnormalities relevant to symptoms
of schizophrenia, including hypoactivity, heightened
anxiety-like responses, reduced social interaction [18],
deficits in both long-term [19] and working memory
[20], and impairments in contextual fear conditioning
[9]. As potential mechanisms for these behavioral abnor-
malities, Sandy mice have been shown to exhibit reduced
dopamine transmission in the forebrain [18] and desta-
bilization of snapin, which binds to SNAP25 and regu-
lates calcium-dependent exocytosis [19].
The sandy mutation was backcrossed onto a C57BL/

6 J background for at least 11 generations to obtain sdy/
B6 mice [21]. These mice show schizophrenia-like be-
haviors including hyperactivity, spatial learning and
memory deficits, impaired working memory under chal-
lenging conditions, and disruption of dopamine/D2-re-
lated mechanisms that regulate cortical function and
neuronal excitability [21,22]. sdy/B6 mice also exhibit in-
creased impulsive and compulsive behaviors relevant to
psychiatric disorders [23].
Thus, a growing body of evidence implicates dysbindin-

1 in psychiatric disorders. However, because of failure to
replicate genetic association studies [24], a lack of causal
variants with a notable impact on disease risk that might
contribute to schizophrenia [25], and methodological diffi-
culties in postmortem brain research due to heterogeneity
of tissues with respect to biochemical parameters, lifetime
history of medications and physiological status at the time
of death [26], it remains unclear how dysbindin-1 func-
tions as a susceptibility gene for these disorders.
A recent study in mice and humans demonstrated an

epistatic interaction between catechol-O-methyl transfer-
ase (COMT) and dysbindin-1 that modulates prefrontal
function, specifically, subjects with reduced function of ei-
ther COMT or dysbindin-1 show superb physiological
performance, whereas those with reductions in both pro-
teins have performance deficits [27].
As dysbindin-1 has both beneficial and detrimental ef-

fects in prefrontal cortical function, we performed a gain-
of-function study of dysbindin-1 by developing transgenic
mice that express the human dysbindin-1 gene (Dys1A-
Tg) and we analyzed their behavioral phenotypes.

Results
Generation of Dys1A-Tg mice
Dysbindin-1 exists as multiple isoforms produced by al-
ternative mRNA splicing. Of these isoforms, dysbindin-
1A, -1B, and -1C are commonly expressed transcripts,
although dysbindin-1B is not expressed in mice [17].
Here, we constructed a transgene expressing human
dysbindin-1A isoform cDNA, C-terminally fused to GFP
(hDTNBP1-GFP) [28] under control of the CA pro-
moter, consisting of a modified promoter of the chicken
gene for β-actin with a cytomegalovirus immediate-early
enhancer [29] (Figure 1A). Pronuclear injection of the
transgene into fertilized C57BL/6 J mouse eggs was per-
formed, generating Dys1A-Tg mice expressing human
dysbindin-1 protein (Figure 1B). There was no apparent
compensatory decrease in endogenous (mouse) dysbindin-
1 expression in Dys1A-Tg mice (Figure 1C). This indicated
that total expression levels of dysbindin-1 are significantly
increased in Dys1A-Tg mice. Since it was revealed that
line 1 Dys1A-Tg mice express higher levels of human
dysbindin-1, we performed the following experiments in
this line. Through subsequent matings with wild-type
mice, offspring were obtained at a frequency not signifi-
cantly different from the expected Mendelian ratio
(Dys1A-Tg, 47.4%; n = 190; P = 0.157 by χ2 analysis).
Dys1A-Tg mice were fertile, and germline transmission of
the transgene was confirmed for at least 10 generations,
with an apparently normal coat color (data not shown).
Reverse transcription-polymerase chain reaction (RT-PCR)
analysis detected hDTNBP1-GFP transcript expression in
various tissues of Dys1A-Tg mice, but not in wild-type
mice (Figure 1D). Quantitative real-time RT-PCR revealed
that hDTNBP1-GFP mRNA is expressed in the brain cor-
tex in Dys1A-Tg (line 1) mice but not in wild-type mice,
whereas mouse Dtnbp1 mRNA is similarly expressed in
the brain cortex in Dys1A-Tg and wild-type mice
(hDTNBP1-GFP mRNA, Dys1A-Tg, 3.77 ± 0.66, n = 5;
wild-type, 0.00 ± 0.00, n = 4, P = 0.001; mouse Dtnbp1
mRNA, Dys1A-Tg, 0.91 ± 0.06, n = 5; wild-type, 1.00 ±
0.09, n = 4, P = 0.42; normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) mRNA and relative
to mouse Dtnbp1 mRNA in wild-type mice).

Behavioral characterization of Dys1A-Tg mice under basal
conditions
To determine if dysbindin-1 overexpression affects phys-
ical and behavioral profiles in mice, we used the standard-
ized SHIRPA (SmithKline Beecham, Harwell, Imperial
College, Royal London Hospital, phenotype assessment)
screening program [30], which was slightly modified as de-
scribed [31]. Of the 28 components in the primary
SHIRPA screening, a significant difference between Dys1A-
Tg and wild-type littermates was observed only in limb
grasping behavior (P = 0.045, Mann–Whitney U test;
Table 1). Moreover, χ2 analysis revealed a significant geno-
type difference in the number of mice that showed limb
grasping behavior (Dys1A-Tg, 72%, n = 18; wild-type, 38%,
n = 16; χ2 = 10.7, P = 0.0011). There were no appreciable
differences in the other motor functions, appearance, sen-
sory functions, or anxiety levels between Dys1A-Tg and
wild-type mice (Table 1). Further behavioral analyses in
secondary screening showed no genotype differences in
distance traveled, rearing, and time spent in the center re-
gion of the open-field test (Figure 2A −C), pre-pulse in-
hibition (PPI) levels (Figure 2D), startle responses to main



Figure 1 Generation of Dys1A-Tg mice. (A) Schematic of the transgene construct (hDTNBP1-GFP) with CA promoter, human dysbindin-1
(hDTNBP1) cDNA C-terminally fused to GFP, and Simian virus 40 polyadenylation signal sequence (PolyA). (B) Western blot analysis of transgenically
expressed human dysbindin-1 and endogenous (mouse) dysbindin-1 protein in Dys1A-Tg mice. Protein lysates prepared from whole brain of adult
male Dys1A-Tg mice (lines 1 and 2) and wild-type littermates, a Sandy mouse lacking dysbindin-1 protein, and a wild-type control mouse were
subjected to western blot analysis with anti-dysbindin and anti-GAPDH antibodies. Closed and open arrowheads indicate transgene products and
endogenous dysbindin-1 protein, respectively. (C) The intensity of each band in the western blot (B) was quantitated and normalized vs. GAPDH. Data
are expressed as mean ± SEM. WT, wild-type; Tg, Dys1A-Tg; KO, knockout. *P < 0.05, ***P < 0.001 vs. wild-type of the same line. (D) Semi-quantitative
RT-PCR analysis of transgenic human dysbindin-1 and endogenous mouse dysbindin-1 mRNA expression in various tissues of Dys1A-Tg mice and
wild-type littermates. GAPDH serves as an internal control. hDTNBP1, human dysbindin-1; mDtnbp1, mouse dysbindin-1; SM, smooth muscle; PFC,
prefrontal cortex; HP, hippocampus.
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pulses of 120 dB (Dys1A-Tg, 407 ± 53; wild-type: 395 ± 66;
arbitrary unit), and latency to fall over in three sessions of
the accelerated rotarod test (Figure 2E). These results sug-
gest that under basal conditions, Dys1A-Tg mice have no
gross behavioral abnormalities except in limb grasping
behavior.

Behavioral response to acute treatment with METH and
phencyclidine in Dys1A-Tg mice
Mice administered with psychostimulants (e.g., METH)
and non-competitive N-methyl-D-aspartate receptor an-
tagonists (e.g., phencyclidine, PCP) serve as animal
models for psychiatric disorders including schizophrenia
[32,33]. DTNBP1 has been implicated as a risk factor for
psychiatric disorders such as schizophrenia [9-11,13-20],
therefore we examined behavioral responses to acute
treatment with METH and PCP in Dys1A-Tg mice. In
the open-field test, repeated two-way analysis of variance
(ANOVA) revealed a significant time and genotype inter-
action in METH-induced hyperlocomotion at 1 mg/kg
(F11, 572 = 2.28, P = 0.010), while METH at 2 mg/kg had
no significant effect on the interaction (F11, 374 = 0.784,
P = 0.66; Figure 3A). Dys1A-Tg mice administered with
1 mg/kg METH showed significantly increased total
locomotor activity for 30 min immediately after METH
administration compared with wild-type mice (P < 0.05;
Figure 3A right). After METH administration, PPI was
significantly disrupted (treatment effect, F2, 272 = 6.75, P =
0.0016) but no significant genotype effect was identified
(F1, 272 = 1.27, P = 0.26; repeated three-way ANOVA;
Figure 3B). Two-way ANOVA revealed a significant effect
of PCP on locomotor activity (F2,25 = 16.6, P < 0.0001) but
not genotype effect (F1, 25 = 0.005, P = 0.94; two-way
ANOVA; Figure 3C). The novel object investigation test
was subsequently performed using mice that received PCP
(Figure 3D). In this test, exploratory behavior towards a
novel object is assessed. Two-way ANOVA revealed a sig-
nificant effect of PCP (F2, 19 = 7.74, P = 0.0035) but not the
interaction of PCP and genotype (F2,19 = 0.718, P = 0.50).

Behavioral response to chronic PCP treatment in Dys1A-Tg
mice
We also examined behavioral responses to chronic treat-
ment with PCP for 14 days in Dys1A-Tg mice. To re-
duce the number of animals, mice were subjected to a
battery of behavioral tests (Figure 4A). Dys1A-Tg and
wild-type littermates (n = 12–14) were subcutaneously
injected with PCP (3 or 10 mg/kg) or vehicle (saline)
once a day for 14 days, as previously reported [34]. PCP-
induced increases in locomotion were not different



Table 1 SHIRPA primary screening in Dys1A-Tg mice

Paradigm and examination Wild-type Dys1A-Tg P value

Appearance

Body weight (g) 23.4 ± 0.43 23.1 ± 0.40 0.88

Body position 4.00 ± 0 00 4.00 ± 0.00 N.D.

Respiration rate 2.00 ± 0.00 2.06 ± 0.06 0.35

Heart rate 1.06 ± 0.06 1.11 ± 0.08 0.62

Tremor 0.13 ± 0.09 0.11 ± 0.08 0.90

Palpebral closure 0.00 ± 0.00 0.00 ± 0.00 N.D.

Piloerection 0.00 ± 0.00 0.00 ± 0.00 N.D.

Lacrimation 0.00 ± 0.00 0.00 ± 0.00 N.D.

Motor function

Spontaneous activity 3.00 ± 0.00 3.00 ± 0.00 N.D.

Transfer arousal 3.94 ± 0.17 4.00 ± 0.16 0.79

Gait 0.00 ± 0.00 0.03 ± 0.03 0.35

Pelvic elevation 2.06 ± 0.06 2.06 ± 0.06 0.93

Tail elevation 1.81 ± 0.10 1.83 ± 0.09 0.88

Trunk curl 0.38 ± 0.13 0.44 ± 0.12 0.69

Limb grasping 0.38 ± 0.13 0.72 ± 0.11 0.045

Grip strength 2.56 ± 0.13 2.72 ± 0.14 0.44

Righting reflex 0.00 ± 0.00 0.00 ± 0.00 N.D.

Contact reflex 1.00 ± 0.00 0.97 ± 0.03 0.35

Negative geotaxis 0.00 ± 0.00 0.00 ± 0.00 N.D.

Sensory function

Touch escape 1.81 ± 0.10 1.89 ± 0.11 0.64

Positional passivity 0.03 ± 0.03 0.06 ± 0.06 0.97

Visual placing 1.88 ± 0.09 1.94 ± 0.06 0.48

Corneal reflex 1.00 ± 0.00 1.00 ± 0.00 N.D.

Toe pinch 2.75 ± 0.11 2.72 ± 0.11 0.86

Anxiety level

Urination 0.38 ± 0.13 0.17 ± 0.09 0.18

Defecation 2.56 ± 0.49 3.00 ± 0.58 0.75

Vocalization 0.88 ± 0.09 0.89 ± 0.08 0.90

Provoked biting 0.88 ± 0.09 0.83 ± 0.09 0.74

Data are expressed as mean ± SEM (Dys1A-Tg, n = 18; wild-type, n = 16).
P values were calculated using the Mann–Whitney U test. Bold type indicates
P < 0.05. N.D., not different.
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between Dys1A-Tg and wild-type mice (Figure 4B). In the
FST, two-way ANOVA revealed a significant effect of PCP
(F2, 70 = 12.5, P < 0.0001) but not interaction between
PCP and genotype (F2, 70 = 0.848, P = 0.43; Figure 4C). As
several mice injected with PCP at 10 mg/kg showed ab-
normal behavior such as increased locomotion in home
cages, we subsequently performed the social interaction
and novel object recognition tests in mice injected with
3 mg/kg PCP or vehicle only. In wild-type mice, as
expected, PCP (3 mg/kg) significantly impaired social
interaction and preference index in the novel object
recognition test (Figure 4D, E). In contrast, Dys1A-Tg
mice showed mildly attenuated responses to chronically
administered PCP, but these did not reach statistically
significant levels except for the social interaction test. In
the social interaction test (Figure 4D), two-way ANOVA
revealed no significant effect of PCP (F1, 48 = 1.28, P =
0.26) but identified a significant interaction between PCP
and genotype (F1, 48 = 4.24, P = 0.045). The post-hoc
Tukey–Kramer test showed that chronic PCP reduces so-
cial interaction in wild-type mice only (P < 0.05), and
there is a significant difference between Dys1A-Tg and
wild-type mice injected with vehicle (P < 0.05). In the
novel object recognition test, mice first freely explore
two objects (training session), and memory retention for
the objects evaluated after 24 h (test session). As statis-
tical analysis showed no significant differences in training
session behavior (data not shown), test session results are
shown (Figure 4E). Two-way ANOVA revealed a sig-
nificant PCP effect for the preference index (F1, 48 = 11.8,
P = 0.0012) but not interaction between PCP and geno-
type (F1,48 = 1.58, P = 0.22).

Altered gene expression in Dys1A-Tg mouse brain
As dysbindin-1 is involved in transcriptional regulation
[28,35], we performed gene expression profiling in the
prefrontal cortex, hippocampus, and striatum of Dys1A-
Tg mice, using the Affymetrix GeneChip. Significantly
different expression between Dys1A-Tg and wild-type
mice was detected in 13 genes (Table 2). The expression
of other genes including endogenous (mouse) Dtnbp1
did not statistically significantly differ between the two
genotypes. We could not detect the transgenic gene (hu-
man) DTNBP1 because of species difference in nucleo-
tide sequence. TRAF2 and NCK interacting kinase gene
(Tnik) was significantly increased in both the prefrontal
cortex and striatum of Dys1A-Tg mice. Ten out of 13
genes were decreased in Dys1A-Tg mice, with the most
prominent being the immediate-early gene activity regu-
lated cytoskeletal-associated protein (Arc) and early
growth response 2 (Egr2) in the prefrontal cortex (0.29-
and 0.48-fold vs. wild-type, respectively).

Discussion
We aimed to gain insight into the role of dysbindin-1 in
psychiatric disorders. To this end, we first generated
Dys1A-Tg mice expressing human DTNBP1 and then
analyzed their phenotypes. In order to investigate the
function of dysbindin-1 relevant to clinical application,
human DTNBP1 was chosen as a transgene. Dys1A-Tg
mice were born viable in the expected Mendelian ratios,
apparently normal and fertile. Primary screening of be-
havior and function using the SHIRPA protocol showed
a marginal change in limb grasping in Dys1A-Tg mice.
They also exhibited increased hyperlocomotion after



Figure 2 Essentially normal behavior in Dys1A-Tg mice under basal conditions. Distance traveled (A), vertical rearing activity (B), and time
spent in the center area (C) of the open-field test, PPI of the acoustic startle response (D), and latency to fall in the accelerated rotarod test
(E) were analyzed in Dys1A-Tg (closed symbols and bars) and wild-type (open symbols and bars) mice. Data are expressed as mean ± SEM.
Number of mice for each genotype, 19–21 (A–C), 17–19 (D), and 17 (E). Statistical analysis was performed by repeated two-way ANOVA. **P < 0.01 vs.
PPI value at 68 db of pre-pulse intensity. There was no significant main effect of genotype in any experiment.
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Figure 3 Slightly increased responses to METH and PCP in Dys1A-Tg mice. Acute behavioral responses to METH (A and B) or PCP (C and D)
were examined using locomotor (A and C), PPI (B), and object investigation (D) tests in Dys1A-Tg (closed symbols and bars) and wild-type (open
symbols and bars) mice. METH or PCP were injected at 60 min and cumulative locomotor activity measured for 70–100 min was indicated in bar
graphs in (A) and (C). Data are expressed as mean ± SEM. Number of mice for each genotype, 14–27 (A), 17–35 (B), 3–8 (C), and 3–5 (D). Statistical
analysis was performed by repeated three or two-way ANOVA followed by the Tukey–Kramer post-hoc test. *P < 0.05, **P < 0.01 vs. vehicle of the same
genotype. #P < 0.05 vs. wild-type of the same treatment.
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Figure 4 Effects of chronic PCP administration in Dys1A-Tg mice. (A) The experimental schedule consisted of four successive behavioral
tests (see Methods for details). (B–E) PCP was administered subcutaneously daily for 14 days, and locomotor activity measured using a digital
counter system with an infrared sensor for 90 min (B), immobility time in the FST (C), duration of social interaction between two unfamiliar test
mice of the same genotype and treatment (D), and object exploration time and preference index in the test session of the novel object
recognition memory test on day 21 (E) were determined in Dys1A-Tg (closed bars) and wild-type (open bars) mice. Data are expressed as mean ± SEM.
Number of mice for each genotype is 12–14 obtained from three independent cohorts. Statistical analysis was performed by two-way ANOVA followed
by the Tukey–Kramer post hoc test. *P < 0.05 vs. vehicle of the same genotype, #P < 0.05 vs. wild-type of the same treatment.

Table 2 Genes with significantly altered expression in the brain of Dys1A-Tg mice

Brain region/
changes in
Dys1A-Tg

Gene name Gene symbol UniGene ID Fold change
vs. wild-type

Signal intensity

Wild-type Dys1A-Tg

Prefrontal cortex

Increased TRAF2 and NCK interacting kinase Tnik Mm.126193 1.3 ± 0.1 3765 ± 169 4742 ± 195

Decreased Kruppel-like factor 10 Klf10 Mm.4292 0.6 ± 0.0 1055 ± 21 621 ± 31

Activity regulated cytoskeletal-associated
protein

Arc Mm.25405 0.3 ± 0.1 2194 ± 442 644 ± 156

early growth response 2 Egr2 Mm.290421 0.5 ± 0.1 633 ± 76 307 ± 86

RIKEN cDNA 5330406 M23 gene 5330406M23Rik Mm.109877 0.7 ± 0.0 2301 ± 117 1502 ± 86

Myelin transcription factor 1-like Myt1l Mm.253067 0.6 ± 0.0 1926 ± 154 1224 ± 77

RIKEN cDNA C130075A20 gene C130075A20Rik –– 0.5 ± 0.0 643 ± 71 348 ± 21

Integrin beta 1 binding protein 1 Itgb1bp1 Mm.352231 0.5 ± 0.0 343 ± 23 172 ± 14

Hippocampus

Increased G protein-coupled receptor 178 Gpr178 Mm.297552 1.4 ± 0.1 1512 ± 71 2169 ± 76

Chemokine (C-C motif) ligand 21b Ccl21b Mm.220853 1.7 ± 0.1 874 ± 78 1503 ± 65

Decreased zinc finger, MYM domain containing 1 Zmym1 Mm.273806 0.7 ± 0.0 2050 ± 64 1398 ± 75

Striatum

Increased TRAF2 and NCK interacting kinase Tnik Mm.126193 1.3 ± 0.1 3418 ± 220 4587 ± 232

Decreased DNA segment, Chr 4, Wayne State University 53,
expressed

D4Wsu53e Mm.331964 0.7 ± 0.1 2878 ± 230 1863 ± 165

Kruppel-like factor 2 (lung) Klf2 Mm.26938 0.6 ± 0.1 414 ± 62 244 ± 27

Transcripts that satisfy the microarray quality criterion (quality index > 0.3) were analyzed. Signal intensity data are expressed as mean ± SEM of three pools, each
from three mice.
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METH administration. In the brain of Dys1A-Tg mice,
transcriptomic analysis identified several up- and down-
regulated genes, including the immediate-early genes
Arc and Egr2.
Among two lines of Dys1A-Tg mice generated, total

levels of dysbindin-1 (human and mouse dysbindin-1)
were considered to be significantly higher in line 1 while
those in line 2 were only slightly higher than wild-type
mice (Figure 1C). Therefore, we performed the following
behavioral and gene expression experiments in line 1.
However, we could not rule out the possibility that the
obtained results in the present study might be attributed
to the disruption of other genes where the transgene
was inserted.
In the social interaction test, which was conducted on

day 17 in our test battery, we observed impairments in
Dys1A-Tg mice that received vehicle (saline) for 14 days
compared with wild-type mice (Figure 4D). Although
PCP significantly decreased social interaction in wild-
type mice, it did not further decrease the behavior in
Dys1A-Tg mice. Interpretation of these results is difficult
but may be related to detrimental effect in Dys1A-Tg
mice caused by repeated vehicle administration for
14 days. As our previous study showed that the FST
lasts for only 3 days after the last PCP injection in
C57BL6/J mice [34], and it is necessary to minimize test
interactions [36,37], we designed the present behavioral
test battery. However, since we did not use a washout
period following chronic PCP treatment, the possibility
for residual acute effects of PCP may not be excluded es-
pecially in the locomotor test and the FST conducted on
day 14 and day 15, respectively, and in the mice treated
with PCP at 10 mg/kg.
As discussed above, there is a growing body of evi-

dence implicating dysbindin-1 in psychiatric disorders
[9-11,13-20], nevertheless it remains unclear how
dysbindin-1 increases susceptibility to these disorders
[24-26]. Dysbindin-1-deficient mutant Sandy mice (spon-
taneous mutant in a DBA/2 J mouse strain) display a
variety of behavioral abnormalities relevant to symp-
toms of schizophrenia [9,18-20], as well as reduced
dopamine transmission in the forebrain [18]. sdy/B6
mice (Sandy mutant mice on a C57BL/6 J background)
show schizophrenia-like behaviors including hyperactivity,
learning and memory deficits, and disruption of dopa-
mine/D2-related mechanisms that regulate cortical func-
tion and neuronal excitability [21,22]. These mice also
exhibit increased impulsive and compulsive behaviors rele-
vant to psychiatric disorders [23]. The present observa-
tions that Dys1A-Tg mice are essentially normal under
basal conditions (except for increased limb grasping be-
havior) and exhibit altered behavioral responses to METH,
indicate that dysbindin-1 overexpression does not cause
strong detrimental effects under basal conditions but may
induce vulnerability toward psychotomimetics. The fact
that either overexpression (Dys1A-Tg) or underexpression
(Sandy both on DBA/2 J and C57BL/6 J backgrounds) of
dysbindin-1 leads to behavioral alterations in mice high-
lights the functional importance of this protein and the
molecular networks in which dysbindin-1 is involved.
Dysbindin-1 is expressed ubiquitously in the body and

brain [1], and has been postulated to be implicated not
only in psychiatric disorders such as schizophrenia, bi-
polar disorder, and METH psychosis [5,10-12,15-17], but
also peripheral diseases such as type 7 Hermansky-
Pudlak syndrome, which is accompanied with oculocuta-
neous albinism, prolonged bleeding, and pulmonary
fibrosis due to abnormal vesicle trafficking to lysosomes
and related organelles [2]. Thus, Dys1A-Tg mice may
serve as a model for various diseases and complement
dysbindin-1-null Sandy mice.
DTNBP1 variants (including e.g., protective and risk hap-

lotypes) are reported to affect susceptibility to substance-
induced psychosis [12], and dysbindin-1 is involved in
regulation of synaptic plasticity [6,9], neurotransmitter re-
lease [3-5], and membrane surface expression of NMDA
and D2 receptors [6-8]. Altogether, it is suggested that
dysbindin-1 plays significant roles in neurobehavioral con-
trol and psychiatric disorders.

Conclusions
In summary, we have generated Dys1A-Tg mice express-
ing human DTNBP1. Dys1A-Tg mice are apparently nor-
mal and fertile without abnormalities in their coat color,
but with a marginal change in limb grasping, slightly ex-
aggerated behavioral response to acutely administered
METH. In the brain of Dys1A-Tg mice, expression levels
of several genes are altered, including the immediate-
early genes, Arc and Egr2. Our results in Dys1A-Tg mice
further suggest a critical role for dysbindin-1 in psychi-
atric disorders.

Methods
Ethics statement
All animal care and handling procedures were per-
formed according to the Guidelines for the Care and
Use of Laboratory Animals approved by the Japanese
Pharmacological Society, and were approved by the Ani-
mal Care and Use Committee of the Graduate School of
Pharmaceutical Sciences, Osaka University. All efforts
were made to minimize the number of animals used.

Generation of Dys1A-Tg mice expressing human
dysbindin-1
hDTNBP1-GFP consists of Homo sapiens dysbindin-1
isoform A (accession no. NP_115498, 351 amino acids),
green fluorescent protein (GFP), and a termination
codon. A 1,773-bp fragment encoding 591 amino acids
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of hDTNBP1-GFP was inserted into the HapI site of the
pCA-pA vector containing the CA promoter [29], and
the transgene construct confirmed by DNA sequencing.
Next, a 3.7-kb fragment including hDTNBP1-GFP cDNA
was excised by BamHI-XhoI digestion, and used to gener-
ate Dys1A-Tg mice by pronuclear injections into fertilized
C57BL/6 mouse eggs.
Genotypes were determined by PCR using genomic

DNA extracted from tail biopsies in extraction buffer
(5 mM EDTA, 100 mM Tris–HCl, pH 8.5, 200 mM
NaCl, 0.2% SDS, and 200 μg/mL proteinase K). Geno-
typing was performed on genomic DNA (40 ng) using
AmpliTaqGold DNA Polymerase (Applied Biosystems,
Foster City, CA, USA) and the following primers located
in different exons of the human DTNBP1 gene (5′-GAC
TAA GAA TCC ATG ACA GCA AAT C-3′ and 5′-TTA
ATT CTG AGG GAT TTG GAA CCT-3′; product size,
547 bp). The PCR reaction consisted of 40 cycles of de-
naturation at 94°C for 30 s, annealing at 55°C for 30 s,
and elongation at 72°C for 1 min.
Dys1A-Tg mice were backcrossed with female C57BL/6 J

mice (Charles River, Osaka, Japan) for at least 10 genera-
tions. Wild-type female mice were mated with male
Dys1A-Tg mice and 8–20-week-old male offspring were
used for experiments. Mice were group housed under a
12-h light–dark cycle (lights on at 8:30 a.m.) with free ac-
cess to food and water.

RT-PCR and western blot analyses
RT-PCR was performed as described previously, but with
some modifications [38]. Briefly, total RNA was reverse
transcribed and cDNA from three mice mixed and sub-
jected to semi-quantitative RT-PCR analysis using Gotaq
Hot Start Green Master Mix (Promega, Tokyo, Japan)
and the following primers corresponding to different
exons of the mouse Dtnbp1 gene (5′-GAA CCA TTT
GCT GCA CCT GGA C-3′ and 5′-GGC CTT CTG
TGT GTG CTC TGT ATC G-3′; product size, 157 bp),
the human DTNBP1 gene (5′-GCA GCT CCC AGC
TTT AAT CGC AG-3′ and 5′-TGG GCG TGC TCT
GCA TCT AGT-3′; product size, 232 bp), and the
mouse GAPDH gene, which served as an internal con-
trol (5′-GTG TTC CCT ACC CCC AAT GTG-3′ and
5′-TAC CAG GAA ATG AGC TTG AC-3′; product
size, 241 bp). To confirm validity of genomic DNA amp-
lification, the mouse Dtnbp1 gene was amplified using
intron 6-specific primers (5′-GCA CTC AGG AGA
CCA TGA CA-3′ and 5′-GGT TGA CAC TCT TGC
GGA AT-3′; product size, 305 bp). Quantitative real-
time RT-PCR was also performed in the same way as
mentioned above.
Western blot analysis was performed as described

[39,40] using mouse monoclonal anti-dysbindin anti-
body, which was produced in our laboratory against
glutatione S-transferase-fused human dysbindin-1 [28].
Briefly, 20 μg of protein from precipitated brain homog-
enates were separated on SDS-PAGE and electrotrans-
ferred onto Immobilon-P Transfer Membranes (Millipore,
Billerica, MA, USA), and then probed with primary
antibodies: mouse monoclonal anti-dysbindin antibody
(1:1,000; Cell Signaling Technology, Danvers, MA, USA)
and mouse anti-GAPDH antibody (1:10,000; Millipore),
followed by anti-mouse horseradish peroxidase-conjugated
antibody (1:2,000; GE Healthcare, Piscataway, NJ, USA).
The intensity of the bands was quantitated with Image J
software (National Institutes of Health, MD, USA).

Drugs and experimental design for behavioral analyses
Drug solutions were administered to mice in a volume
of 0.1 mL/10 g body weight. METH and PCP dissolved
in saline were acutely injected intraperitoneally or sub-
cutaneously, respectively. Each behavioral study was per-
formed using separate cohorts of mice, except for the
novel object investigation test.
In the chronic PCP administration model [34], 6-

week-old mice were chronically administered with PCP
for 14 consecutive days, and then subjected to a battery
of four different behavioral tests: locomotor analysis on
day 14 (30 min after the last PCP dose), FST on day 15,
social interaction test on day 17, and novel object recog-
nition test on days 20 (training session) and 21 (reten-
tion test session). The sequence of this behavioral test
battery was fundamentally designed to minimize test inter-
actions, by arranging the least stressful tasks first and
more stressful tasks last [36,37], with the exception that
the FST was performed the day after the last PCP injection
as it has been shown that chronic PCP-increased immobil-
ity in the FST lasts for only 3 days in C57BL/6 J mice [34].

Initial behavioral screening
Fundamental sensory and physical functions of mice
were evaluated using SHIRPA [30], with slight modifica-
tions as described previously [31].

Locomotor analysis
The open-field test was performed using the infrared
Actimeter system (Panlab, Barcelona, Spain), and dis-
tance traveled, vertical rearing activity, and time spent in
the center area were measured using Acti-Track soft-
ware (Panlab), as described previously [41,42]. In the
PCP study, locomotor activity was measured using a
digital counter system with an infrared sensor (Supermex;
Muromachi Kikai Co., Tokyo, Japan), as described previ-
ously [43].

PPI of the acoustic startle response
PPI of the acoustic startle response was measured in a
startle chamber (SR-LAB; San Diego Instruments, San
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Diego, CA, USA), essentially as described previously
[44]. PPI was calculated as percentage score for each
pre-pulse trial type using the following equation: pre-
pulse inhibition (%) = [1 − (startle response for pulse with
pre-pulse)/(startle response for pulse alone)] × 100.

Rotarod test
An accelerating rotarod treadmill (Acceler Rota-Rod
7650; Ugo Basile, Varese, Italy) was used to evaluate
motor coordination and learning. Mice were first trained
repeatedly at a fixed speed (12 rpm) until the mice were
able to stay on the rod for at least 300 s. One day after
training, performance on the accelerating (12–30 rpm)
rotarod was examined for a maximum recording time of
600 s. Tests were performed once for 3 consecutive days.

Novel object investigation test
Exploratory behavior towards a novel object was evalu-
ated as described [45]. After 15 min habituation under
dim light (40 lx) in an observation cage (28 cm length ×
20 cm width × 12 cm height), mice were presented with
a novel object (a wooden ball; diameter 5 cm), which
was placed in the center of the cage. Duration of object
exploratory behavior (sniffing or licking the wooden ball)
was measured for 5 min from recordings by trained
blinded observers. The test was performed just after loco-
motor analysis in the same mice treated with acute PCP.

FST
The FST was performed as described previously [46].
Briefly, behavior of mice in a glass cylinder (19 cm diam-
eter × 25 cm height) containing water (25 ± 1°C) to a
depth of 13 cm was videotaped for 6 min, and duration
of immobility (making only minimal movements to keep
floating) was measured by trained blinded observers.
After the test, mice were dried thoroughly with a towel
and returned to their home cage.

Social interaction test
In chronic PCP-treated mice, social interaction between
adult mice was evaluated as described [33], with slight
modifications. Mice were individually habituated to the
observation apparatus (35 cm length × 25 cm width ×
25 cm height) for 10 min for 2 consecutive days. Next,
two unfamiliar test mice of the same genotype and treat-
ment were placed in the apparatus, and social inter-
action behavior videotaped for 5 min. Time spent in
active social interaction such as sniffing and following the
partner, mounting, and crawling under/over the partner
was measured by trained blinded observers.

Novel object recognition memory test
Novel object recognition memory was evaluated as de-
scribed [33,34], with slight modifications [47]. Mice were
individually habituated to the observation box (30 cm
length × 20 cm width × 20 cm height) for 10 min for 3
consecutive days. Next, a training session was per-
formed, and mice were allowed to explore the observa-
tion box containing two different objects for 10 min.
After 24 h, the retention test session was conducted, and
each mouse was placed back in the observation box with
a familiar object (presented in the training session) and a
novel object. Behavior of the mice was videotaped and
evaluated by trained blinded observers. Preference indi-
ces were calculated as the ratio of time spent exploring
the novel object vs. the total time spent exploring both
familiar and novel objects, and used as a dependent
measure of recognition memory.
Microarray analysis
Prefrontal cortex, hippocampus, and striatum were manu-
ally dissected from the brains of nine each Dys1A-Tg and
wild-type mice. Three samples were pooled and subjected
to GeneChip mouse genome 430 2.0 arrays (Affymetrix,
Tokyo, Japan) which is one of the most comprehensive
whole mouse genome expression array. A total of 18
hybridization experiments were performed according to
the manufacturer’s instructions, and data analyzed using
GeneChip Operating Software (GCOS) v1.1.1. GCOS was
used to calculate the signal intensity and percent present
calls on hybridized chips. Fold change of individual genes
between Dys1A-Tg and wild-type mice are presented as
the ratio of normalized gene expression values in Dys1A-
Tg vs. wild-type mice.
Statistical analyses
Statistical analysis was performed using StatView (SAS
Institute Japan Ltd., Tokyo, Japan). Significant differ-
ences were determined by the Student’s t-test, Mann–
Whitney U test, χ2 test or two- or three-way, factorial or
repeated-measures ANOVA with genotype, drug, and
time as factors of variation. Tukey–Kramer post-hoc
tests were also performed after significant main effects
for genotype, drug, or interaction between genotype ×
drug were observed. The threshold for statistical signifi-
cance was defined as P < 0.05.
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