
Zhang et al. Mol Brain          (2021) 14:121  
https://doi.org/10.1186/s13041-021-00833-3

RESEARCH

Overexpression of LIMK1 in hippocampal 
excitatory neurons improves synaptic plasticity 
and social recognition memory in APP/PS1 mice
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Abstract 

Accumulating evidence indicates that the actin regulator cofilin is overactivated in Alzheimer’s Disease (AD), but 
whether this abnormality contributes to synaptic and cognitive impairments in AD is unclear. In addition, the brain 
region and cell types involved remain unknown. In this study, we specifically manipulate LIMK1, the key protein kinase 
that phosphorylates and inactivates cofilin, in the hippocampus of APP/PS1 transgenic mice. Using local injections 
of the AAV virus containing LIMK1 under the control of the CaMKIIα promoter, we show that expression of LIMK1 in 
hippocampal excitatory neurons increases cofilin phosphorylation (i.e., decreases cofilin activity), rescues impairments 
in long-term potentiation, and improves social memory in APP/PS1 mice. Our results suggest that deficits in LIMK1/
cofilin signaling in the hippocampal excitatory neurons contribute to AD pathology and that manipulations of LIMK1/
cofilin activity provide a potential therapeutic strategy to treat AD.

Keywords:  APP/PS1 transgenic mice, LTP, LIMK1, Cofilin, Learning and memory

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Alzheimer’s Disease (AD) is the leading cause of demen-
tia, but no effective treatment or cure is currently avail-
able. A prevailing hypothesis is that the production 
from sequential cleavage of the amyloid precursor pro-
tein (APP) by secretases and accumulation of amyloid 
peptides (Aβ) drives the progressive neuronal damage 
and cognitive impairment in AD [1]. Aβ molecules are 
released to the extracellular space and can aggregate to 
form soluble oligomers (AβO) or further accumulate into 
insoluble plaques [1–3]. How these peptides lead to neu-
ronal degeneration and memory loss remains unclear; 

however, recent evidence indicates that soluble oligom-
ers (AβO) are sufficient to cause synaptic deficits prior to 
the deposition of the plaques and these synaptic effects 
are the best correlates of cognitive impairments in AD 
[3–7]. It has been shown that AβO, but not monomers, 
induce loss of synaptic proteins and dendritic spines 
[3–9]. In addition, AβO can inhibit long-term poten-
tiation (LTP), facilitate long-term depression, and impair 
memory without causing neuronal death [4–7, 9–15]. 
LTP is an extensively studied form of synaptic plasticity 
widely regarded as key mechanisms of memory forma-
tion [16, 17]. LTP deficits are also widely reported in ani-
mal models of AD [5–7]. The molecular mechanisms by 
which these synaptic processes are affected in AD are still 
poorly understood.

LIM domain kinase 1 (LIMK1) is a key signaling mol-
ecule critical for actin regulation in the brain. LIMK1 
can be activated by various surface proteins, includ-
ing glutamate receptors, and exerts its effects on actin 
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dynamics by directly phosphorylating and inactivat-
ing the actin binding protein cofilin [18, 19]. Together 
with cofilin phosphatases, LIMK1 regulates the bal-
ance of phosphorylated (inactive) and dephosphoryl-
ated (active) cofilin to control actin reorganization 
[20, 21]. Perturbations of LIMK1 and cofilin have been 
shown to impair spine morphology, synaptic plasticity 
and memory, underscoring the crucial role of LIMK1/
cofilin signaling in synaptic and brain function [22–
25]. Recent studies have also shown that abnormali-
ties in both LIMK1 and cofilin are associated with AD 
patients and animal models of AD [25–42]. For exam-
ple, the level of phosphorylated cofilin was found to be 
decreased by the Aβ treatment as well as in the brain 
of AD mouse models [25, 28–38], suggesting that over-
activation of cofilin may contribute to AD pathology. 
Interestingly, increased phosphorylated cofilin (i.e., 
decreased cofilin activity) has also been found to be 
associated with AD models under some circumstances 
[25, 29–33]. These results indicate complex effects of 
AD pathology on LIMK1/cofilin signaling, and there-
fore, whether and how LIMK1/cofilin contributes to 
AD pathogenesis remains unclear.

In this study, we investigated the role of hippocampal 
LIMK1 and cofilin using APP/PS1 transgenic mice. We 
used 3-month old mice because previous studies indicated 
that there were  little or no amyloid plaques detected at this 
age, which allowed us to examine the effects of LIMK1/
cofilin before the plaque formation [43, 44]. We showed 
that these APP/PS1 transgenic mice exhibited impairments 
in social memory and LTP in the hippocampus. Hippocam-
pal level of phosphorylated cofilin was also decreased. Viral 
expression of LIMK1, specifically in the hippocampal excit-
atory neurons, increased cofilin phosphorylation and LTP 
and improved social memory. These results established the 
critical roles of hippocampal LIMK1/cofilin in early synap-
tic and memory deficits in APP/PS1 mice and suggested 
that LIMK1/cofilin signaling pathway may serve as poten-
tial therapeutic target to treat AD.

Results
Impaired social memory in APP/PS1 mice
We focused on social behavior and memory in 3-month 
old mice because this aspect is relatively less studied 
compared to other cognitive processes in APP/PS1 trans-
genic mice. We assessed social interaction and memory 
using the three-chamber social interaction test and the 
five-trial social memory test. In the three-chamber social 
interaction test (Fig.  1A) that consisted of three stages 
(stage 1: habituation; stage 2: sociability; stage 3: social 
memory), both APP/PS1 and wild-type (WT) littermates 
spent more time interacting with the stranger 1 (S1) 
than the empty cage, suggesting that sociability was not 
altered in APP/PS1 mice (Fig. 1B). However, during stage 
3, while WT mice spent more time interacting with the 
novel stranger (S2) than S1, APP/PS1 mice spent similar 
amount of time interacting with S1 and S2, suggesting 
impaired social recognition memory (Fig. 1C, D). In the 
five-trial social memory test (Fig. 1E), both WT and APP/
PS1 mice spent gradually less time interacting with the 
stranger mouse during the repeated exposures (trial 1–5), 
but showed increased interaction when a novel stranger 
mouse was introduced on trial 6 (Fig. 1F). However, APP/
PS1 mice spent significantly less time interacting with the 
novel stranger than WT mice on trial 6 (Fig. 1F), suggest-
ing impaired social recognition memory. These results 
suggest that APP/PS1 mice are impaired in social rec-
ognition memory but not sociability. We also conducted 
the open field test but found no significant differences 
between WT and APP/PS1 mice in travel distance/speed 
or the amount of time spent in center/periphery zone of 
the arena (Fig. 1G–J). Similarly, there were no differences 
in total travel distance and the amount of time spent in 
the closed or open arms during the elevated plus maze 
test (Fig.  1L–M). These results suggest that locomotor 
activity and anxiety-like behavior were not significantly 
altered in 3-month old APP/PS1 mice.

(See figure on next page.)
Fig. 1  Impaired social memory in 3-month old APP/PS1 mice. A Schematic of the three-chamber social recognition memory test consisting of 
stage 1 (habituation), stage 2 (social interaction) and stage 3 (social recognition memory). B Normal social interaction during stage 2 in APP/PS1 
mice (WT n = 10, p < 0.001; APP/PS1: n = 10, p < 0.001; two-tailed paired t-test). C Impaired preference for S2 over S1 during stage 3 in APP/PS1 
mice (WT n = 10, p = 0.002; APP/PS1: n = 10, p = 0.386; two-tailed paired t-test). D Discrimination scores during stage 3 showing impaired social 
memory in APP/PS1 mice (p = 0.009, two-tailed t test). E Schematic of the five-trial social memory test. F Both WT and APP/PS1 mice showed 
memory acquisition during trials 1–5 (WT n = 10, APP/PS1 n = 17; genotype group: F(1,9) = 0.002, p = 0.965; trial: F(4,36) = 17.572, p < 0.001; repeated 
two-way ANOVA for trial 1 versus trial 5). On trial 6, APP/PS1 mice showed significantly decreased interaction time compared to WT mice during 
the presentation of a novel stranger mouse (p < 0.001, two-tailed t test). G Open field test showing travel distance in WT and APP/PS1 mice 
(WT n = 10, APP/PS1 n = 17, p = 0.864, two-tailed t-test). H Average travel speed of WT and APP/PS1 mice in open field test (WT n = 10, APP/
PS1 n = 17, p = 0.851, two-tailed t-test). I Time spent in center arena in open field test (WT n = 10, APP/PS1 n = 17, p = 0.242, two-tailed t-test). J 
Time spent in peripheral area in open field test (WT n = 10, APP/PS1 n = 17, p = 0.235, two-tailed t-test). K Travel distance in elevated plus maze 
test (WT n = 10, APP/PS1 n = 17, p = 0.899, two-tailed t-test). L Time spent in closed arms in elevated plus maze test (WT n = 10, APP/PS1 n = 17, 
p = 0.092, two-tailed t-test). M Time spent in open arms in elevated plus maze test (WT n = 10, APP/PS1 n = 17, p = 0.455, two-tailed t-test). Data are 
presented as mean ± s.e.m. n = number of mic. **p < 0.01, ***p < 0.001, ns = not significant
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Impaired LTP and reduced cofilin phosphorylation in APP/
PS1 mice
To investigate cellular mechanisms underlying 
memory deficits in APP/PS1 mice, we carried out 

electrophysiological recordings at the Schaffer collat-
eral-commissural pathway (CA1 synapse). We first 
examined basal synaptic transmission using various 
stimulation intensities but found no differences in input/

Fig. 1  (See legend on previous page.)
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output curves of field excitatory postsynaptic potentials 
(fEPSPs) between WT and APP/PS1 mice (Fig. 2A). Pre-
synaptic function as judged by paired-pulse facilitation 
(PPF) was also not altered in APP/PS1 mice (Fig. 2B). We 
then compared LTP induced by a theta burst stimulation 
(TBS) protocol. As shown in Fig. 2C and D, TBS-induced 
LTP was significantly lower in APP/PS1 compared to 
WT mice. These results indicate that APP/PS1 mice were 
impaired in synaptic plasticity at the age of 3  months. 
Next, we analyzed LIMK1 and cofilin expression using 
Western blot analysis of protein lysates prepared from 
the hippocampus. As shown in Fig.  3, while the total 
protein levels of LIMK1 and cofilin were not altered, 

phosphorylated (i.e., inactive) cofilin (P-Cofilin) was sig-
nificantly reduced in APP/PS1 mice. Therefore, cofilin 
activity is abnormally upregulated in the hippocampus of 
APP/PS1 mice.

Hippocampal expression of LIMK1 increases 
phosphorylated cofilin in APP/PS1 mice
To investigate whether increased cofilin activity in the 
hippocampus is responsible for the synaptic and cogni-
tive deficits in APP/PS1 mice, we employed local injec-
tions of AAV virus, which expressed LIMK1-EGFP 
(LIMK1 fused to EGFP) or control EGFP under the 

Fig. 2  Impaired LTP in 3-month old APP/PS1 mice. A Input–output 
curves of fEPSP showing no differences between WT and APP/
PS1 mice (WT n = 4 slices from 4 mice, APP/PS1 n = 6 slices from 4 
mice; genotype, group: F(1,3) = 1.210, p = 0.352; stimulus intensity: 
F(8,24) = 29.777, p < 0.001; repeated two-way ANOVA). B Paired pulse 
ratio showing no differences between WT and APP/PS1 mice (WT 
n = 6 slices from 4 mice, APP/PS1 n = 6 slices from 4 mice; genotype: 
F(1,5) = 0.013, p = 0.913; inter-pulse interval: F(7,35) = 18.961, p < 0.001; 
repeated two-way ANOVA). C TBS induced LTP at the CA1 synapse in 
WT, but not in APP/PS1 mice. Scale bars: 0.2 mV/10 ms. D Summary 
graph showing no LTP in APP/PS1 compared to WT mice (WT n = 10 
slices from 6 mice, APP/PS1 n = 12 slices from 7 mice, p = 0.002, 
two-tailed t-test). Data are presented as mean ± s.e.m. fEPSP 
sample traces in this and other figures were average of 6 individual 
responses. **p < 0.01, ns = not significant

Fig. 3  Reduced P-cofilin in the hippocampus of 3-month old APP/
PS1 mice. A Sample Western blots of hippocampal protein lysate 
showing reduced protein of P-cofilin, but not total cofilin and 
LIMK1. B Summary graphs showing no significant difference in 
LIMK1 protein expression between WT and APP/PS1 mice (WT n = 5 
independent experiments from 5 mice, APP/PS1 n = 5 independent 
experiments from 5 mice, p = 0.350, two-tailed t-test). C Summary 
graph showing no significant difference in total cofilin protein 
expression between WT and APP/PS1 mice (WT n = 5 independent 
experiments from 5 mice, APP/PS1 n = 5 independent experiments 
from 5 mice, p = 0.524, two-tailed t-test). D Summary graph showing 
significantly reduced P-cofilin protein level in APP/PS1 compared to 
WT mice (WT n = 5 independent experiments from 5 mice, APP/PS1 
n = 5 independent experiments from 5 mice, p = 0.014, two-tailed 
t-test). Data are presented as mean ± s.e.m. *p < 0.05, ns = not 
significant
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control of the excitatory neuronal promoter CaMKIIα, 
bilaterally into the hippocampus. We reasoned that over-
expression of LIMK1-EGFP would increase cofilin phos-
phorylation and therefore normalize cofilin activity. As 
shown in Fig. 4, LIMK1-EGFP expression was restricted 
to the hippocampus (Fig. 4A). EGFP signals and colocal-
ized with the neuronal marker, NeuN, as well as LIMK1, 
but not with the astrocytic marker, GFAP (Fig.  4B and 
C). To confirm the expression of LIMK1, we isolated 
the hippocampus and performed Western blot analysis. 
As shown in Figs. 5 and 6, the level of P-Cofilin was sig-
nificantly increased in both WT (Fig.  5) and APP/PS1 
(Fig. 6) mice expressing LIMK1-EGFP compared to EGFP 
control virus. Total protein level of cofilin was compara-
ble between LIMK1-EGFP and EGFP expressing mice for 
both WT and APP/PS1 mice. Thus, viral expression of 
LIMK1 decreases cofilin activity in the hippocampus via 
increasing cofilin phosphorylation.

Hippocampal expression of LIMK1 improves LTP in APP/
PS1 mice
To investigate the effects of decreased cofilin activ-
ity caused by overexpressing LIMK1, we first exam-
ined synaptic function at CA1 synapses in both WT 
and APP/PS1 mice. As shown in Fig.  7, expression of 
LIMK1-EGFP had no effects on basal synaptic trans-
mission, PPF and TBS-LTP in WT mice. In contrast, 
expression of LIMK1-EGFP significantly enhanced 
TBS-LTP without affecting basal synaptic strength or 

PPF (Fig.  8) in APP/PS1 mice. These results suggest 
that decreasing cofilin activity was sufficient to rescue 
the TBS-LTP impairment in APP/PS1 mice. It is pos-
sible that in WT mice, endogenous cofilin activity is 
already low that further reduction does not affect LTP.

Hippocampal expression of LIMK1 improves social memory 
in APP/PS1 mice
To further investigate the functional consequence 
of overexpressing LIMK1, we examined behavioral 
responses in both WT and APP/PS1 mice express-
ing EGFP or LIMK1-EGFP. Expression of LIMK1-
EGFP had no effects on social recognition memory in 
the three-chamber test or anxiety-like behavior in the 
elevated plus maze test in WT mice (Fig.  9A–C, I-K), 
but impaired social recognition in the five-trial test 
(Fig. 9D) and decreased locomotor activity in the open 
field test (Fig. 9E–H). These results indicate that over-
expression of LIMK1 in WT mice negatively affected 
social behavior, suggesting that a balanced level of 
P-Cofilin is important. In contrast, expression of 
LIMK1-EGFP in APP/PS1 mice significantly improved 
social recognition memory in both three-chamber and 
five-trial repeated exposure tests (Fig.  10A–D), with-
out affecting locomotor activity or anxiety-like behav-
ior (Fig. 10E–K). Therefore, the elevated cofilin activity 
in the hippocampus is an important cause for impaired 
social memory in APP/PS1 mice.

Fig. 4  Viral expression of LIMK1-EGFP in the hippocampus. A Sample image showing EGFP fluorescent signals within the hippocampus of APP/
PS1 mice 3 weeks after bilateral AAV virus injection (3-month old). Scale bar: 1000 μm. B Immunostaining images for the neuronal marker NeuN, 
astrocytic marker GFAP and LIMK1 showing LIMK1-EGFP signals colocalized with NeuN and LIMK1, but not with GFAP. Scale bars: 50 μm. C Summary 
graph showing proportion of LIMK1-EGFP expressing cells that also expressed NeuN, LIMK1 or GFAP (n = 5 sections from 5 mice)
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Discussion
Although changes in LIMK1/cofilin signaling in ani-
mal models of AD appear to be complex being affected 
by subcellular compartments and age of the mice [25, 
27, 30–33], increased cofilin activity as determined by 

decreased P-Cofilin and the formation of aberrant cofi-
lin-actin rods (characterized by accumulation of active 
cofilin) are fairly consistent observations [25, 28–40]. In 

Fig. 5  Overexpression of LIMK1-EGFP increases hippocampal 
P-cofilin in 3-month old WT mice. A Sample Western blots of 
hippocampal protein lysate showing protein levels of LIMK1, 
total cofilin and P-cofilin. B Summary graph showing significantly 
increased hippocampal LIMK1 protein level in WT mice expressing 
LIMK1-EGFP compared to WT mice expressing EGFP (WT + EGFP 
n = 5 independent experiments from 5 mice, WT + LIMK1-EGFP 
n = 5 independent experiments from 5 mice, p = 0.002, two-tailed 
t-test). C Summary graph showing no significant difference in 
total cofilin protein level between WT mice expressing EGFP and 
LIMK1-EGFP (WT + EGFP n = 5 independent experiments from 
5 mice, WT + LIMK1-EGFP n = 5 independent experiments from 
5 mice, p = 0.934, two-tailed t-test). D Summary graph showing 
significantly increased P-cofilin protein level in hippocampus in 
WT mice expressing LIMK1-EGFP compared to WT mice expressing 
EGFP (WT + EGFP n = 5 independent experiments from 5 mice, 
WT + LIMK1-EGFP n = 5 independent experiments, p = 0.004, 
two-tailed t-test). Data are presented as mean ± s.e.m. **p < 0.01, 
ns = not significant

Fig. 6  Overexpression of LIMK1-EGFP increases hippocampal 
P-cofilin in 3-month old APP/PS1 mice. A Sample Western blots of 
hippocampal protein lysate showing protein levels of LIMK1, total 
cofilin and P-cofilin in APP/PS1 mice expressing LIMK1-EGFP or EGFP. 
B Summary graph showing significantly increased hippocampal 
LIMK1 protein level in APP/PS1 mice expressing LIMK1-EGFP 
compared to WT mice expressing EGFP (APP/PS1 + EGFP n = 5 
independent experiments from 5 mice, APP/PS1 + LIMK1-EGFP 
n = 5 independent experiments from 5 mice, p = 0.004, two-tailed 
t-test). C Summary graph showing no significant difference in total 
cofilin protein level between APP/PS1 mice expressing EGFP and 
LIMK1-EGFP (APP/PS1 + EGFP n = 5 independent experiments from 
5 mice, APP/PS1 + LIMK1-EGFP n = 5 independent experiments from 
5 mice, p = 0.442, two-tailed t-test). D Summary graph showing 
significantly increased P-cofilin protein level in hippocampus in APP/
PS1 mice expressing LIMK1-EGFP compared to WT mice expressing 
EGFP (APP/PS1 + EGFP n = 5 independent experiments from 5 mice, 
APP/PS1 + LIMK1-EGFP n = 5 independent experiments, p = 0.002, 
two-tailed t-test). Data are presented as mean ± s.e.m. **p < 0.01, 
n = not significant
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addition, reducing cofilin activity by expressing constitu-
tively inactive cofilin (S3D) [41] or manipulating cofilin 
regulators can rescue Aβ42-induced spine loss as well as 
deficits in LTP and contextual memory in APP/PS1 mice 
[38, 39]. Furthermore, a phosphorylated cofilin peptide 
that presumably prevents cofilin activation also partially 
improves working memory and novel object recognition 
in the 5XFAD AD mouse model [42]. These studies sug-
gest that increased cofilin activity may be responsible for 
the cognitive and synaptic deficits associated with AD, 
but no direct evidence is yet available by using genetic 
manipulations of LIMK1/cofilin signaling. In addition, 

the brain regions and cell types that are involved remain 
unknown.

In this study, we have addressed these questions by 
expressing full-length LIMK1 specifically in hippocampal 
excitatory neurons. In order to avoid the effect of amyloid 
plaques, we choose to use three-month old mice because 
little or no plaque formations have been detected at this 
age [43, 44, Additional file  1: Figure S1]. First, we show 

Fig. 7  Overexpression of LIMK1-EGFP in the hippocampus has no 
effect on LTP in 3-month old WT mice. A Input–output curves of 
fEPSP showing no difference between WT mice expressing EGFP and 
LIMK1-EGFP (WT + EGFP n = 5 slices from 5 mice, WT + LIMK1-EGFP 
n = 6 slices from 6 mice; genotype: F(1,3) = 4.626, p = 0.121; stimulus 
intensity: F(8,24) = 24.095, p < 0.001; repeated two-way ANOVA). 
B Paired pulse ratio showing no differences between WT mice 
expressing EGFP and LIMK1-EGFP (WT + EGFP n = 6 slices from 
5 mice, WT + LIMK1-EGFP n = 6 slices from 6 mice; genotype: 
F(1,4) = 0.292, p = 0.617; inter-pulse interval: F(7,28) = 14.844, p < 0.001; 
repeated two-way ANOVA). Scale bars: 0.2 mV/10 ms. C TBS induced 
comparable LTP at the CA1 synapse in WT mice expressing EGFP or 
LIMK1-EGFP. D Summary graph showing no significant difference 
in LTP of last 10 min between WT expressing EGFP and LIMK1-EGFP 
(WT + EGFP n = 8 slices from 5 mice, WT + LIMK1-EGFP n = 9 slices 
from 5 mice, p = 0.308, two-tailed t-test). Data are presented as 
mean ± s.e.m. ns = not significant

Fig. 8  Overexpression of LIMK1-EGFP in the hippocampus improves 
LTP in 3-month old APP/PS1 mice. A Input–output curves of fEPSP 
showing no differences between APP/PS1 mice expressing EGFP 
and LIMK1-EGFP (APP/PS1 + EGFP n = 5 slices from 5 mice, APP/
PS1 + LIMK1-EGFP n = 6 slices from 6 mice; genotype: F(1,4) = 0.751, 
p = 0.435; stimulus intensity: F(8,32) = 55.649, p < 0.001; repeated 
two-way ANOVA). B Paired-pulse ratio analysis showing no difference 
between APP/PS1 mice expressing EGFP and LIMK1-EGFP (APP/
PS1 + EGFP n = 6 slices from 5 mice, APP/PS1 + LIMK1-EGFP n = 6 
slices from 6 mice; genotype: F(1,6) = 1.514, p = 0.265; inter-pulse 
interval: F(7,42) = 21.588, p < 0.001; repeated two-way ANOVA). Scale 
bars: 0.2 mV/10 ms. C TBS induced higher LTP in APP/PS1 mice 
expressing LIMK1-EGFP compared to APP/PS1 mice expressing 
EGFP. D Summary graph showing significantly enhanced LTP of last 
10 min in APP/PS1 mice expressing LIMK1-EGFP compared to APP/
PS1 mice expressing EGFP (APP/PS1 + EGFP n = 7 slices from 5 mice; 
APP/PS1 + LIMK1-EGFP n = 7 slices from 5 mice; p < 0.001, two-tailed 
t-test). Data are presented as mean ± s.e.m. ***p < 0.001, ns = not 
significant
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that APP/PS1 mice are impaired in social recognition 
memory. The social memory impairments in APP/PS1 
mice are evident in both the three-chamber and five-trial 
social interaction tasks. In both tests, sociability appears 
not affected. Second, we show that LTP at CA1 synapse 
is significantly reduced whereas basal synaptic strength 
and presynaptic function are intact. The impaired LTP 
is accompanied by increased cofilin activity without 
changes in total LIMK1 or cofilin in the hippocampus. 
These results are consistent with many previous stud-
ies [4–7] showing that synaptic and cognitive deficits 
occur in APP/PS1 mice even before Aβ plaque forma-
tion. Third, we show that overexpression of LIMK1 in 
hippocampal excitatory neurons decreases cofilin activ-
ity and improves LTP in APP/PS1 mice. Interestingly, 
overexpression of LIMK1 in WT hippocampus does not 
improve LTP although it does decrease cofilin activity. It 
is possible that the endogenous cofilin activity is already 
sufficiently low in WT mice that a further decrease does 
not affect LTP. However, overexpression of LIMK1 in 
WT hippocampus does negatively affect social memory 
in the five-trial test, suggesting that this effect is cofilin-
independent. Finally, we show that overexpression of 
LIMK1 improves social memory in APP/PS1 mice. These 
results suggest that the abnormally high cofilin activity 
in 3-month APP/PS1 mice is an important contributor 
to the synaptic and cognitive impairments in these mice. 
Because the expression of LIMK1 is restricted to the 
hippocampal excitatory neurons, our results reveal that 
increased cofilin activity in hippocampal excitatory neu-
rons may be particularly important for early synaptic and 
cognitive deficits in APP/PS1 transgenic mice.

Previous studies have shown that Aβ42 oligomers can 
activate LIMK1 and its upstream regulators (e.g., the Rho 
GTPases Rac1 and their associated protein kinases p21- 
activated kinases and Rho-kinase ROCK2) in neurons 
[26, 27, 31]. In addition, increased LIMK1 and ROCK2 

activity has also been reported in the hAPPJ20 AD mouse 
model [27]. Consistent with these results, pharmaco-
logical inhibition of LIMK1 has been shown to prevent 
dendritic spines loss induced by Aβ42 oligomers as well 
as spine loss in the hAPPJ20 mouse model [27]. These 
results appear to be inconsistent with findings in the pre-
sent study where increasing LIMK1 rescues synaptic and 
cognitive deficits. However, there are a number of poten-
tial reasons that could explain the discrepancy between 
the pharmacological inhibition and our study. First, the 
animal models (APP/PS1 versus hAPPJ20) used in these 
two studies are different and therefore the changes in 
LIMK1/cofilin signaling could be different. Second, 
the age of mice used in these studies (3-month versus 
6-month old) is also different. It is known that changes 
in LIMK1/cofilin signaling are affected by the age of the 
animals [30]. Third, the present study uses molecular 
manipulations specifically in the hippocampal excitatory 
neurons rather than global inhibition of LIMK1. It is pos-
sible that changes in LIMK1/cofilin is region/cell-specific, 
so that global and region/cell cell-specific manipulations 
of LIMK1 may have different effects on synaptic and cog-
nitive impairments in these mice. Previous studies have 
shown that both dorsal and ventral hippocampal regions, 
including dorsal CA2 and dentate gyrus (DG) as well as 
ventral CA1, are important for social recognition mem-
ory [45–47]. Although we injected the virus in the dorsal 
hippocampus, which suggests a critical role of LIMK1 in 
this region, it remains unknown whether dorsal CA2 or 
DG or both are required. It would be important to distin-
guish these possibilities in future studies.

In summary, we have demonstrated that cofilin activ-
ity is increased in 3-month old APP/PS1 transgenic mice 
and that overexpression of LIMK1, specifically in the hip-
pocampal excitatory neurons, improves synaptic plastic-
ity and social memory. These results suggest that changes 
in LIMK1/cofilin in hippocampal excitatory neurons 

(See figure on next page.)
Fig. 9  Effect of LIMK1-EGFP expression in 3-month old WT mice. A Normal social interaction during stage 2 of the three-chamber social test in WT 
mice expressing EGFP or LIMK1-EGFP (WT + EGFP n = 9, p < 0.001; WT + LIMK1-EGFP n = 7, p < 0.001; two-tailed paired t-test). B Preference for S2 
over S1 during stage 3 of the three-chamber social test in WT mice expressing EGFP or LIMK1-EGFP (WT + EGFP n = 9, p < 0.001; WT + LIMK1-EGFP 
n = 7, p < 0.001; two-tailed paired t test). C Discrimination scores during stage 3 of three-chamber social test showing no difference in social 
memory between WT mice expressing EGFP and LIMK1-EGFP (p = 0.783, two-tailed t-test). D Both EGFP and LIMK1-EGFP expressing WT mice 
showed memory acquisition during trials 1–5 of the five-trial social memory assay (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7; genotype: 
F(1,6) = 7.086, p = 0.037; trial: F(4,24) = 9.180, p < 0.001; repeated two-way ANOVA for trial 1–5). On trial 6, WT + LIMK1-EGFP mice showed significantly 
decreased interaction time compared during the presentation of a novel mouse compared to WT + EGFP mice (p = 0.041, two-tailed t-test). 
E Open field test showing travel distance in WT mice expressing EGFP or LIMK1-EGFP (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7, p = 0.040, 
two-tailed t-test). F Average travel speed in pen field test (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7, p = 0.040, two-tailed t-test). G Time spent in 
center arena in open field test (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7, p = 0.360, two-tailed t-test). H Time spent in peripheral arena in open 
field test (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7, p = 0.259, two-tailed t-test). I Travel distance in elevated plus maze test (WT + EGFP n = 10, 
WT + LIMK1-EGFP n = 7, p = 0.594, two-tailed t-test). J Time spent in closed arms in elevated plus maze test (WT + EGFP n = 10, WT + LIMK1-EGFP 
n = 7, p = 0.187, two-tailed t-test). K Time spent in open arms in elevated plus maze test (WT + EGFP n = 10, WT + LIMK1-EGFP n = 7, p = 0.188, 
two-tailed t-test). Data are presented as mean ± s.e.m. n = number of mice. *p < 0.05, ***p < 0.001, ns = not significant
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are a key event that may underlie the neuropathology of 
3-month old APP/PS1 mice before the amyloid plaque 
formation. It remains to be investigated whether these 
changes are present at other ages or in other AD mod-
els and whether manipulations of LIMK1 have a similar 

rescuing effect. Nevertheless, our results suggest that 
intervention of LIMK1/cofilin may provide a poten-
tial strategy to improve synaptic function and memory 
impairment associated with AD patients.

Fig. 9  (See legend on previous page.)
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Materials and methods
Animals
APP/PS1 transgenic mice (#34829-JAX) were obtained 
from the Jackson Laboratory and were housed (2–5 mice 
per cage) on a 12 h/12 h light/dark cycle with food and 
water ad  libitum. The following PCR primers were used 
for genotyping APP/PS1 mice: oIMR 1644: AAT​AGA​
GAA​CGG​CAG​GAG​CA; oIMR 1645:GCC​ATG​AGG​
GCA​CTA​ATC​AT. All experimental procedures were 
conducted according to the guidelines of the Canadian 
Council on Animal Care (CCAC) and approved by the 
Animal Care Committee at the Hospital for Sick Chil-
dren, Canada. All experiments were performed blind to 
the genotype of the mice. Both male and female mice 
were used but no differences were noted between sexes, 
therefore the data were pooled together for statistical 
analyses between genotypes.

Surgical procedures
For virus injections, the AAV2/DJ-CaMKIIα-LIMK1-
EGFP (LIMK1 fused to EGFP, 7.6 × 1012) and AAV2/
DJ-CaMKIIα-EGFP (1.3 × 1013) (produced through 
Canadian Neurophotonics Platform, Laval Univer-
sity, Canada) were injected bilaterally to the dorsal hip-
pocampus as previously described [46]. Briefly, mice 
were anaesthetized with isoflurane (1.5–2% in 1 L/min-
ute oxygen) and placed onto a stereotaxic frame. Body 
temperature was maintained at 37 °C using a temperature 
controller. A midline scalp incision was made followed by 
craniotomies using a 0.6  mm drill bit. The viruses were 
injected into the dorsal hippocampus (AP: − 2.00  mm, 
DV: − 1.50 mm, ML: ± 1.50 mm relative to bregma; coor-
dinates derived from Paxinos and Franklin, 2007). 1 μL of 
the virus was infused bilaterally at a rate of 0.5 μL/minute 
via an internal cannula connected by tygon tubing to a 10 

μL Hamilton needle syringe. After infusion, the internal 
cannula was left in place for 8 min to allow for diffusion. 
The surgically operated mice were recovered for 4 and 
6  weeks to allow for LIMK1-EGFP and EGFP expres-
sion before behaviour tests were performed. The expres-
sion pattern of LIMK1-EGFP and EGFP as well as the 
injection sites were confirmed by immunohistochemical 
staining of fixed brain sections after behaviour tests.

Slice electrophysiology
All the electrophysiological recordings were done at the 
Schaffer collateral-commissural pathway (CA1 synapse) 
in the hippocampus as previously described [22, 48]. 
In brief, the mouse brains were removed and 350  µm 
brain slices prepared in ice-cold artificial cerebrospi-
nal fluid (ACSF) saturated with 95% O2/5% CO2. ACSF 
contained (in mM): 120.0 NaCl, 3.0 KCl, 1.2 MgSO4, 1.0 
NaH2PO4, 26.0 NaHCO3, 2.0 CaCl2, and 11.0 D-glucose. 
The slices were recovered at 28℃ for 15 min then for at 
least 2  h at room temperature before a single slice was 
transferred to a submersion chamber constantly perfused 
with 95% O2/5%CO2 saturated ACSF. Perfusion flow rate 
was maintained at 2 ml/min. Synaptic transmission was 
evoked by stimulation at 0.067  Hz and recorded with 
glass pipettes (3–4 MΩ) filled with ACSF. For input–out-
put experiments, the stimulus intensity was increased 
gradually. Paired-pulse facilitations were obtained at 
inter-pulse intervals of 25  ms, 50  ms, 100  ms, 200  ms, 
500 ms or 1 s, and calculated as the ratios of the second 
response peak values over the first response peak values. 
LTP was induced by three trains of theta burst stimula-
tions (TBS, five pulses at 100 Hz every 200 ms) with an 
intertrain interval of 10 s. LTP was calculated and statisti-
cally evaluated by comparing the mean values of the last 
10 min of the recording and the mean values of the entire 

Fig. 10  Overexpression of LIMK1-EGFP improves social memory in 3-month old APP/PS1 mice. A Normal social interaction during stage 2 of the 
three-chamber social test in APP/PS1 mice expressing EGFP or LIMK1-EGFP (APP/PS1 + EGFP n = 11, p < 0.001; APP/PS1 + LIMK1-EGFP n = 13, 
p < 0.001; two-tailed paired t-test). B Preference for S2 over S1 during stage 3 of three-chamber social test in APP/PS1 mice expressing LIMK1-EGFP 
but not in APP/PS1 mice expressing EGFP (APP/PS1 + EGFP n = 11, p = 0.178; APP/PS1 + LIMK1-EGFP n = 13, p < 0.001; two-tailed paired t test). C 
Discrimination scores during stage 3 of the three-chamber social test showing significantly improved social memory in APP/PS1 mice expressing 
LIMK1-EGFP compared to APP/PS1 mice expressing EGFP (p = 0.002, two-tailed t-test). D Both APP/PS1 + LIMK1-EGFP and APP/PS1 + EGFP 
mice showed memory acquisition during trials 1–5 of the five-trial social memory assay (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14; 
genotype: F(1,11) = 0.027, p = 0.873; trial: F(4,44) = 59.429, p < 0.001; repeated two-way ANOVA). On trial 6, APP/PS1 + LIMK1-EGFP mice showed 
significantly more interaction time during the presentation of a novel stranger mouse compared to APP/PS1 + EGFP mice (p = 0.001, two-tailed 
t-test). E Open field test showing travel distance in APP/PS1 mice expressing EGFP or LIMK1-EGFP (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP 
n = 14, p = 0.393, two-tailed t-test). F Average travel speed in pen field test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.380, 
two-tailed t-test). G Time spent in center arena in open field test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.371, two-tailed 
t-test). H Time spent in peripheral arena in open field test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.474, two-tailed t-test). 
I Travel distance in elevated plus maze test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.543, two-tailed t-test). J Time spent 
in closed arms in elevated plus maze test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.725, two-tailed t- test). K Time spent in 
open arms in elevated plus maze test (APP/PS1 + EGFP n = 12, APP/PS1 + LIMK1-EGFP n = 14, p = 0.818; two-tailed t-test). Data are presented as 
mean ± s.e.m. n = number of mice. **p < 0.01, ***p < 0.001, ns = not significant

(See figure on next page.)
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baseline. All data acquisition and analysis were done 
using pCLAMP 10.6 (Axon Instruments, Foster City, Cal-
ifornia, USA).

Western blot analysis
Protein lysates were prepared from hippocampal slices 
as previously described [48]. Briefly, hippocampus was 

Fig. 10  (See legend on previous page.)
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isolated quickly on ice and dissolved in ice-cold lysis 
buffer containing (in mM): 20 Tris–HCl (pH 7.5), 150 
NaCl, 1 EDTA, 1 EGTA, 1%Triton X-100, 1 Na3VO4, 20 
NaF, and 1% protease inhibitor cocktail and phosphatase 
inhibitor (Roche) and kept at 4 ℃ for 40 min and debris 
was removed by centrifugation at 10,000g for 15  min. 
The protein samples were mixed with 25% volume of 
4 × SDS loading buffer (250  mM Tris–HCl, 10% SDS, 
0.5% bromophenol blue, 50% glycerol, 5% beta-mercap-
toethanol, pH 7.4) and loaded and separated on a SDS-
PAGE ployacrylamide gel followed by electrotransfer to 
a nitrocellulose filter. The filter was then blocked with 
5% dry milk in TBST (20  mM Tris–HCl, 9% NaCl, 1% 
Tween-20, pH 7.6) and incubated overnight at 4 °C with 
indicated primary antibodies in TBST. Following washing 
and incubation with appropriate secondary antibodies, 
the filter was washed and developed using an enhanced 
chemiluminescence (Thermo-Fisher, CAT#34579) detec-
tion method. The images were analyzed using the image 
studio software as per manufacturer’s instruction. The 
amount of total protein loaded was controlled by nor-
malizing each tested protein with anti-GAPDH immu-
noreactivity on the same blot. The antibodies used 
included: anti-Cofilin (Cell Signaling Technology, rab-
bit, CAT#51755), anti-LIMK1 (Cell Signaling Technol-
ogy, rabbit, CAT#3842S), anti-P-Cofilin (Santa Cruz 
Biotechnology, rabbit, CAT#LO115), anti-GAPDH (Cell 
Signaling Technology, rabbit, CAT#2118S), and HRP-
linked goat anti-rabbit IgG (Cell Signaling Technology, 
CAT#7074S).

Immunohistochemistry
Previously described procedure was followed [46]. 
Briefly, mice were anesthetized by ketamine and perfused 
with 0.1M phosphate-buffered saline (PBS) followed by 
4% paraformaldehyde (PFA in PBS). The brain was then 
dissected and post-fixed in 4% PFA for 24  h, and then 
transferred to 30% sucrose in PBS solution until it was 
fully saturated. The brain was then embedded in Tissue-
Tek® O.C.T. compound, frozen in liquid nitrogen and 
sliced to 25 μm coronal or horizontal cryostat sections at 
− 20 °C (Leica CM1950, Concord, Ontario, Canada). The 
brain sections were transferred to a glass slide. Sections 
were washed with PBS, permeabilized by 0.3% Triton for 
1 h, blocked with 5% fetal bovine serum for 1 h, and incu-
bated with primary antibodies overnight at 4 °C, and then 
appropriate secondary antibodies at room temperature 
for 2 h. After washing, the coverslips were mounted using 
the ProLong Diamond Antifade mounting medium DAPI 
for imaging. For thioflavin-S staining, brain sections were 
sequentially washed in 70% and 80% ethanol for 5  min 
each followed by incubation in 1 thioflavin-S for 8  min 

at room temperature. The sections were then washed 
with 80%, 70% ethanol and PBS again for 5  min each. 
The slides were dried and cover slipped with mounting 
media. Images were collected on a Leica epi-fluorescence 
microscope and a Nikon A1R confocal microscopes and 
analyzed using ImageJ software (NIH, Betheseda, Mary-
land, USA). Primary antibodies included: anti-LIMK1 
(Cell Signaling Technology, CAT#3842S), anti-NeuN 
(Cell Signaling Technology, CAT#12943S) and anti-GFAP 
(Cell Signaling Technology, CAT#3670S). Secondary 
antibodies included: Alexa Fluor 555 anti-rabbit IgG for 
anti-LIMK1 and anti-NeuN primary antibodies (Ther-
mofisher Scientific, CAT#A31572), and Alexa Fluor 555 
anti-rabbit IgG for anti-GFAP primary antibody (Ther-
mofisher Scientific, CAT#A31570). The excitation/emis-
sion used were 402/460 (nm) for DAPI, 488/509 (nm) for 
GFP, and 562/580 (nm) for Alexa Fluor 555.

Behavioral tests
All the mice were tested at the age of 3 ± 0.5  months. 
The mice were injected with viruses at the age of 8 weeks 
and behavioral tests were performed 4  weeks later. All 
behavioral tests were performed during the light cycle. 
The mice were tested in open field, elevated plus maze, 
three-chamber social interaction and five-trial repeated 
social test. At least three day intervals were given after 
each test. The detailed procedures of these tests were 
described previously [45], but briefly explained below.

The open field apparatus was a rectangular Plexiglas 
box (40 cm long × 40 cm wide × 35 cm high) comprising 
four walls and an open roof. The illumination in the room 
was provided by centrally placed in-ceiling dim lights. All 
mice were individually tested in one 5 min session. Each 
subject was introduced to the apparatus in the same place 
of the arena near the center and allowed to explore the 
apparatus for 10  min. The apparatus was cleaned thor-
oughly with 75% ethanol before each subject was tested. 
The movement of the mouse was video tracked and ana-
lyzed using ANY-maze software (USA). The open field 
was divided into central (center 20  cm diameter) and 
peripheral zones for analysis.

The elevated plus maze consisted of two open arms 
(35  cm long × 5  cm wide) and two closed arms of the 
same size with 10 cm high side walls. The apparatus was 
placed 50  cm above the ground. The tested mice were 
individually placed in the center and allowed for 10 min 
free exploration. The entries to and time spent in the 
open arms, center zone and closed arms were recorded. 
The maze was cleaned thoroughly with 75% ethanol 
between mice. The movement was tracked and analyzed 
using ANY-maze software (USA).
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For three-chamber social interaction test, tree cham-
bers (60  cm long × 40  cm wide × 22  cm high) con-
nected by removable partitions in the plexiglass walls 
that allowed animals to freely move between the cham-
bers. Mice were handled twice a day for 3 days before the 
test. Prior to the day of test, the handled mice were each 
habituated to the empty apparatus for 10 min. During the 
test, a stranger mouse was placed in a cylindrical wired 
cage (8 cm diameter, 17 cm high) with bars spaced 1 cm 
apart positioned in left and/or right chamber. The mid-
dle chamber was left empty all the time. Each test ses-
sion had three stages: stage 1: 10  min habituation stage 
with two empty cages; stage 2: 5 min sociability test with 
a stranger mouse (S1) and an empty cage; stage 3: 5 min 
social memory test with the previously encountered 
stranger (S1) and a second novel stranger (S2). Each stage 
was separated by a 45  s-1  min interval. The amount of 
interaction was recorded using sniff time when the ani-
mal oriented its nose within 1 cm of the mouse contained 
in the wired cage. Sniff time was recorded by an experi-
menter using a stop-watch. Data were analyzed as a per-
centage time spent investigating the target cage over the 
total time interacting with either cage. The interaction 
was also tracked using ANY-maze software (IL, USA).

For five-trial social interaction test, the subject 
mouse was placed in a chamber (40  cm long × 20  cm 
wide × 22 cm high) and presented with a same sex juvenile, 
strange mouse in a cylindrical wired cage (8 cm diameter, 
17 cm high) with bars spaced 1 cm apart. Six consecutive 
1 min interaction trials with a 30–45 s inter-trial interval 
were used for each subject. On the last trial, a novel stran-
ger juvenile mouse of the same sex was presented in the 
cage. A stop-watch was used to record the sniff time when 
the animal oriented its nose within 1  cm of the stranger 
mouse in the wired cage. The interaction was also tracked 
and analyzed using ANY-maze software (IL, USA).

Statistical analyses
All the averaged data in the graphs were stated as 
mean ± SEM and statistically evaluated by Student’s t-test 
for comparisons of two groups or by ANOVA (one-way, 
two-way or repeated measures, as appropriate) for com-
parisons of more than two groups followed by post hoc 
Fisher’s LSD multiple comparison test using the SPSS pro-
gram. P < 0.05 was considered significant. The details of 
statistical data, including statistical methods, P values and 
sample size, were provided in respective figure legends.
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