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Abstract 

Widespread sleep deprivation is a continuing public health problem in the United States and worldwide affecting 
adolescents and adults. Acute sleep deprivation results in decrements in spatial memory and cognitive impairments. 
The hippocampus is vulnerable to acute sleep deprivation with changes in gene expression, cell signaling, and pro-
tein synthesis. Sleep deprivation also has long lasting effects on memory and performance that persist after recovery 
sleep, as seen in behavioral studies from invertebrates to humans. Although previous research has shown that acute 
sleep deprivation impacts gene expression, the extent to which sleep deprivation affects gene regulation remains 
unknown. Using an unbiased deep RNA sequencing approach, we investigated the effects of acute sleep deprivation 
on gene expression in the hippocampus. We identified 1,146 genes that were significantly dysregulated following 
sleep deprivation with 507 genes upregulated and 639 genes downregulated, including protein coding genes and 
long non-coding RNAs not previously identified as impacted by sleep deprivation. Notably, genes significantly upreg-
ulated after sleep deprivation were associated with RNA splicing and the nucleus. In contrast, downregulated genes 
were associated with cell adhesion, dendritic localization, the synapse, and postsynaptic membrane. Furthermore, we 
found through independent experiments analyzing a subset of genes that three hours of recovery sleep following 
acute sleep deprivation was sufficient to normalize mRNA abundance for most genes, although exceptions occurred 
for some genes that may affect RNA splicing or transcription. These results clearly demonstrate that sleep deprivation 
differentially regulates gene expression on multiple transcriptomic levels to impact hippocampal function.
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Introduction
Sleep deprivation is a widespread public health problem 
in the United States and countries around the globe [1]. 
In the United States, estimates suggest that nearly 70% of 
adults and teenagers have insufficient sleep at least one 
day per month [2–4]. Acute sleep deprivation results in 
cognitive impairments (reviewed in [5]), as well as the 
exacerbation of neuropsychiatric and mood disorders 

(reviewed in [6, 7]). The decrements in cognitive func-
tion and performance induced by acute sleep deprivation 
create an economic burden with decreased workplace 
productivity as well as increased accident risk encumber-
ing public safety [8–11]. Moreover, acute sleep depriva-
tion results in increased levels of amyloid-beta as well as 
increased levels of tau in cerebral spinal fluid and plasma, 
which are pathological markers associated with increased 
risk of Alzheimer’s disease [12, 13].

The impact of sleep deprivation on long-term memory 
is phylogenetically conserved as seen in behavioral stud-
ies of invertebrates to rodent models to human subjects 
[14–18]. Moreover, the effects of acute sleep deprivation 
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on memory can extend for days, even with recovery sleep. 
For example, in the marine mollusk Aplysia, the effects of 
acute sleep deprivation persist for at least 48  h inhibit-
ing the formation of long-term memory [17]. Similarly, in 
humans, acute deprivation impairs episodic memory and 
hippocampus dependent memory associations for more 
than two days, despite recovery sleep [18]. Long-lasting 
cellular mechanisms such as changes in gene regulation 
ostensibly underlie the conserved persistent effects of 
acute sleep deprivation on memory. The hippocampus 
is particularly susceptible to the impacts of sleep depri-
vation with changes apparent in cellular signaling, pro-
tein synthesis, and neuronal connectivity following sleep 
deprivation [12, 18–22], although studies differ as to the 
effect of acute sleep deprivation on dendritic structure 
[13, 22–24]. Studies have highlighted the effects of sleep 
deprivation on gene expression and protein synthesis in 
the hippocampus [25–27], with more recent analyses 
conducted to identify gene networks and hubs corre-
lated with sleep deprivation [28]. Sleep deprivation also 
induces epigenetic alterations affecting gene expression 
in animal models and humans ([29, 30] and reviewed in 
[31]). Enhancement of global gene transcription through 
inhibition of histone deacetylation has been shown to 
rescue hippocampus-dependent memory and synaptic 
plasticity in sleep deprived mice [32]. Thus, our under-
standing of the extent and specificity of sleep deprivation 
on gene regulation remains incomplete.

To more fully detail the effects of acute sleep depriva-
tion on transcription, we investigated the effect of 5 h of 
sleep deprivation on gene expression in the hippocam-
pus using an unbiased deep RNA sequencing (RNA-Seq) 
approach. We identified 1146 genes differentially regu-
lated after sleep deprivation. Genes significantly upregu-
lated were preferentially associated with the nucleus with 
functions in RNA binding and processing, whereas genes 
significantly downregulated after sleep deprivation were 
associated with cell adhesion, the synapse, dendrites, and 
postsynaptic membrane. Through comparison with a 
recently published data set analyzing the effects of acute 
sleep deprivation on ribosome associated transcripts in 
excitatory neurons of the hippocampus [27], we found 
a considerable difference between the number of genes 
regulated by sleep deprivation at the total RNA level in 
the ribosome associated pool of transcripts. Genes regu-
lated by sleep deprivation at both the transcriptional and 
translational levels showed enrichment in protein kinase 
and phosphatase activity, as well as potassium and cation 
channel activity. Functions enriched with genes regulated 
by sleep deprivation only in the transcriptome included 
transcription factor binding, histone deacetylase activ-
ity, nucleotide binding, nucleotide exchange factor activ-
ity and small GTPase regulator activity; whereas genes 

regulated solely in the translatome displayed network 
enrichment for the unfolded protein binding pathway, 
protein binding, peptide binding, protein dimerization 
and ubiquitin binding. The data set generated with this 
research highlights the differences in biological function 
between genes upregulated after sleep deprivation and 
those downregulated demonstrating the gene specific 
effects of sleep deprivation and recovery sleep on gene 
regulation.

Materials and methods
Animals
C57BL/6J (Jackson Labs, #000664) male mice between 
3–4  months of age were used for all experiments. Mice 
were housed in groups of up to five under 12 h light/12 h 
dark cycle with ad libitum access to food and water in a 
temperature and humidity controlled room (22  °C and 
55 ± 5%, respectively). Mice were maintained under 
standard conditions consistent with National Institute of 
Health guidelines and approved by the Institutional Ani-
mal Care and Use Committee of the University of Iowa.

Sleep deprivation and recovery
Sleep deprivation experiments
One week prior to sleep deprivation mice were single 
housed with corn cob bedding as previously described 
[25–27]. Three days prior to sleep deprivation, mice were 
gently handled for 3  min, with cages lightly tapped or 
moved. Sleep deprivation was performed starting at the 
beginning of the light cycle to control for circadian differ-
ences in gene expression. Sleep deprivation was carried 
out for 5  h using the gentle handling method [14, 25]. 
Animals were monitored continuously with minimal cage 
tapping and then cage shakes as necessary disturbances 
to achieve sleep deprivation. Non-sleep deprived mice 
were placed in a room by themselves with lighting and 
humidity similar to the sleep deprivation room and left 
undisturbed for 5 h.

Recovery sleep experiments
To study recovery from sleep deprivation, mice were 
sleep deprived for 5 h and then returned to the housing 
room for 3 h to recover. Control animals were left undis-
turbed throughout the period of sleep deprivation and 
recovery sleep. For all experiments, control and experi-
mental animals were sacrificed at the same time to avoid 
circadian confounds. At the end of undisturbed sleep, 
sleep deprivation, or recovery, hippocampi were removed 
and flash frozen. Gene analysis for recovery sleep sam-
ples was performed using quantitative real-time PCR.
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RNA extraction
Hippocampal samples were homogenized in Qiazol 
(Invitrogen) and phase separated using chloroform fol-
lowed by centrifugation at 14,000g for 15  min. RNA 
was extracted using the RNeasy kit (Qiagen) with DNA 
removed with RNase-Free DNase (Qiagen). Samples were 
resuspended in RNase-free water and quantified using 
the Nanodrop 1 and the Agilent Bioanalyzer. Samples 
with an OD 260/280 and OD 260/230 ratio close to 2.0 
and RNA integrity number (RIN) above 8 were selected 
for library preparation.

RNA library preparation and sequencing
RNA libraries were prepared at the Iowa Institute of 
Human Genetics, Genomics Division using the Illumina 
TruSeq Stranded Total RNA with Ribo-Zero gold sam-
ple preparation kit (Illumina). Library concentrations 
were measured with the KAPA Illumina Library Quan-
tification Kit (KAPA Biosystems). Pooled libraries were 
sequenced across two lanes in 150  bp paired-end reads 
using the Illumina HiSeq 4000. A total of 18 samples 
were sequenced in two batches.

RNA sequencing analysis
The bcbio-nextgen pipeline [33] was used to process 
sequencing data. STAR [34] was used to align reads to 
the mm10 genome build and featureCounts was used 
to quantify expression at the gene level [35]. EDASeq 
was used to adjust for GC content effects and account 
for sequencing depth [36] with normalization shown in 
Additional file  1: Figure S1. Run length encoding (RLE 
plots) and PCA analysis were used to validate normaliza-
tion (Additional file 1: Figure S1). Differential expression 
analysis was conducted using edgeR’s quasi-likelihood 
pipeline [37–39]. Batch effects were accounted for by 
directly including batch as a covariate in the edgeR dif-
ferential expression model. Standardized effect sizes were 
calculated by removing the effects of gene abundance 
from fold change magnitude. The RNA-Seq data have 
been deposited in NCBI’s Gene Expression Omnibus 
and are accessible through GEO Series accession number 
GSE166831, https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE16 6831. The code for analyses and fig-
ures related to RNA-Seq data can be accessed through 
GitHub at https:// github. com/ ethan bahl/ gaine 2021_ 
sleep depri vation.

Pathway analysis
To identify biological pathways affected by sleep dep-
rivation, we used NetworkAnalyst V3.0 [40] to perform 
Global Enrichment Network OverRepresentation Analy-
ses (ORA) on upregulated and downregulated genes (< 0.1 

FDR) using the Protein ANalysis THrough Evolutionary 
Relationships (PANTHER):BP and PANTHER:CC classi-
fications to determine biological processes (BP) and cel-
lular components (CC) [41]. For the pathway analyses, a 
P-value < 0.05 was considered significant. Comparison of 
the RNA-seq data from this manuscript with the TRAP-
Seq data available in NCBIs GEO repository, GEO series 
accession GSE156925, https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE15 6925, [27], was performed 
using Gene Ontology-Molecular Function (GO:MF) due 
to the relatively small number of differentially expressed 
genes in common between the two data sets.

Quantitative real‑time PCR (RT‑qPCR)
RNA (500 ng) was used for cDNA preparation with the 
Superscript IV First-Strand Synthesis (Ambion). RT-
qPCR was performed with gene specific primers (Addi-
tional file  2: Table  S1) using Fast SYBR™ Green Master 
Mix (ThermoFisher Scientific). Reactions were run 
using the Quant Studio 7 Real-Time PCR System (Ther-
moFisher Scientific). Samples were quantified in at least 
triplicate using two appropriate housekeeping genes 
(Tubulin and Hprt) that were included on all plates for 
normalization. Neither housekeeping gene was dif-
ferentially expressed between non-sleep deprived and 
sleep deprived samples in the RNA-seq data set: Tuba1a 
Log Fold Change (FC) = 0.018, FDR = 0.882; and Hprt 
LogFC = − 0.003, FDR = 0.981.

Statistical analyses
Differential gene expression was identified using a sta-
tistical cut-off of FDR < 0.10 (Additional file  2: Tables 
S2 and S5), consistent with recent research on differen-
tial gene expression in the hippocampus that has used 
FDR < 0.10 [42, 43]. For convenience, additional tables 
listing the differentially expressed genes at statistical cut-
offs of FDR < 0.05 and < 0.20 are provided. (Additional 
file  2: Tables S8 and S9 respectively). RT-qPCR statisti-
cal analyses were performed using an unpaired Student’s 
t-test in GraphPad Prism. Results were expressed as 
means ± SEM. Values of P < 0.05 were considered as sta-
tistically significant.

Results
Deep RNA sequencing reveals the extent of changes 
in gene expression induced in the hippocampus by acute 
sleep deprivation
Previously researchers analyzed the impact of sleep dep-
rivation on gene expression in the hippocampus using 
microarrays [25]; however, this approach had limita-
tions in detection due to the microarray chip design, 
i.e., probes must be designed a priori that target specific 
anticipated transcripts. In contrast, RNA-seq provides an 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166831
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166831
https://github.com/ethanbahl/gaine2021_sleepdeprivation
https://github.com/ethanbahl/gaine2021_sleepdeprivation
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156925
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156925


Page 4 of 17Gaine et al. Mol Brain          (2021) 14:125 

unbiased approach to identify differential gene expression 
rather than relying on a set of predetermined sequences. 
Moreover, deep RNA sequencing facilitates identifica-
tion of differential expression for non-coding sequences 
including antisense transcripts, long non-coding RNAs 
and microRNAs [44, 45]. Accordingly, we investigated 
the effects of 5 h acute sleep deprivation starting at lights 
on using gentle handling to identify changes in gene 
expression in the hippocampus with deep RNA sequenc-
ing. Sleep deprivation experiments (Fig.  1a) were com-
pleted in two independent cohorts (cohort one had n = 4 
and cohort two had n = 5 samples for each of the non-
sleep deprived and sleep deprived group). Through deep 
sequencing with an average of 143  M reads per sample 
in the non-sleep deprived mice and 136.5  M reads per 
sample in the sleep deprived mice, we found sufficient 
expression levels for 22,582 genes including protein cod-
ing, non-coding, and predicted genes. GC and depth nor-
malization were used to normalize the raw data before 
processing (Additional file 1: Figure S1).

We identified 1,146 genes that were significantly dys-
regulated following sleep deprivation (FDR < 0.10) with 
507 genes upregulated and 639 genes downregulated 
(Fig. 1b and Additional file 2: Tables S2 and S5). Of the 
differentially expressed genes, 1,026 (89.5%) were pro-
tein coding based on the Ensembl biotype classification 
[46]. Heatmap representations are shown for differen-
tially regulated genes based on FDR (≤ 0.01) and stand-
ardized effect size (absolute value >  ± 0.5) to identify 
those genes most strongly affected by sleep deprivation 
(Fig.  1c). The most significantly upregulated gene after 
sleep deprivation was a Regulator of Nonsense Mediated 
mRNA Decay (Upf2), while the most significantly down-
regulated gene after sleep deprivation was Cold Inducible 
RNA Binding Protein (Cirbp). In these experiments, the 
animals were sleep deprived starting at lights on, while 
in the microarray study by Vescey and colleagues, sleep 
deprivation was initiated four to six hours after lights on; 
however, Upf2 and Cirbp were differentially expressed 
after sleep deprivation in both studies. Using a Fisher’s 
Exact Test to compare the overlap between the RNA 
-Seq differential gene expression and the microarray gene 
expression, we found strong overlap between the data 
sets with an odds ratio of 8.43 (confidence interval [7.05, 
10.06]; P-value < 2.2 ×  10–16). We identified 226 differen-
tially regulated genes in common between the two data 
sets, suggesting that sleep deprivation targets a core set 
of genes regardless of whether sleep deprivation begins at 
the beginning of the rest period or after a few hours of 
rest (Additional file 2: Table S10).

With the de novo sequencing approach, we found 6,967 
sequences that were not previously tested in the microar-
ray study by Vecsey and colleagues [25]. Using Ensembl 

biotype classification, 973 genes that were previously 
not analyzed with sleep deprivation were determined to 
be protein coding. Within this additional gene set, there 
were 123 sequences that were significantly differen-
tially expressed between non-sleep deprived and sleep 
deprived groups (FDR < 0.10) including 33 protein coding 
genes, 16 long intergenic non-coding RNAs (lincRNAs), 
2 long non-coding RNAs, 1 microRNA, 14 pseudogenes, 
13 antisense transcripts, 39 EST sequences, and 5 pro-
cessed transcripts. Thus, unbiased deep RNA sequencing 
provided a more thorough analysis of differential gene 
expression than previous research using microarrays.

RNA splicing and nuclear localization are associated 
with genes upregulated after sleep deprivation
To identify biological and functional relevance, we sep-
arately analyzed the upregulated and downregulated 
genes after acute sleep deprivation using Network Ana-
lyst and the PANTHER:BP classification to perform net-
work enrichment. For genes significantly upregulated by 
sleep deprivation, there were 16 pathways significantly 
enriched (Fig.  2a; Additional file  2: Table  S3). Notably, 
RNA splicing was one of the most significant pathways 
identified with genes upregulated after sleep depriva-
tion. As shown in Fig. 2a, the enrichment of RNA splicing 
and processing pathways included 14 genes upregulated 
after sleep deprivation. We also found enrichment for 
pathways involved in circadian rhythms and rhythmic 
processes highlighting the interactions between sleep 
deprivation and the circadian clock. To predict the cel-
lular localization of proteins for which sleep depriva-
tion induced increased gene expression, we utilized the 
PANTHER:CC classification (Fig. 2b and Additional File 
2: Table  S4). Genes upregulated after sleep deprivation 
were most commonly associated with nuclear localiza-
tion, consistent with the hypothesis that processes criti-
cal to RNA splicing and RNA processing are impacted by 
acute sleep deprivation.

Genes downregulated by sleep deprivation are associated 
with dendritic, postsynaptic membrane, and cytoskeletal 
components
Analysis of the genes significantly downregulated after 
sleep deprivation revealed strikingly different biologi-
cal functions and cellular localization than those genes 
that were upregulated after sleep deprivation. When 
analyzing network enrichment using PANTHER:BP, 
we identified 19 pathways enriched for genes down-
regulated after sleep deprivation. The most significantly 
enriched pathway was Cell Adhesion (Fig. 3a and Addi-
tional file  2: Table  S6), with this pathway including 31 
genes significantly downregulated after sleep depriva-
tion. In contrast to the strong nuclear association seen 
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Fig. 1 Acute sleep deprivation causes substantial gene expression changes in the mouse hippocampus. a Schematic showing experimental 
procedure for RNA sequencing following acute sleep deprivation. C57BL/6 J male mice were either sleep deprived for 5 h (n = 9) or left undisturbed 
(n = 9). Immediately following sleep deprivation or undisturbed sleep, the whole hippocampus was dissected out and flash frozen. Total RNA was 
extracted and processed for RNA sequencing. b Volcano plot illustrating differentially expressed genes between non-sleep deprived and sleep 
deprived mice. Genes with a false discovery rate (FDR) < 0.1 are highlighted in red for significantly upregulated (507 genes) and blue for significantly 
downregulated (639 genes) after sleep deprivation. Genes that are not significantly differentially expressed in sleep deprived mice are in grey. c 
Heatmap showing the most differentially expressed genes filtered by FDR ≤ 0.01 and effect size >  ± 0.5 in each cohort. The top rows represent 
genes that are significantly downregulated after sleep deprivation. The bottom rows represent genes that are significantly upregulated after sleep 
deprivation. Each column represents one mouse and columns are grouped by batch. The scale represents log counts per million (logCPM), with red 
denoting upregulation and blue denoting downregulation after sleep deprivation. The most significantly upregulated gene after sleep deprivation 
was UPF2 Regulator of Nonsense Mediated MRNA Decay (Upf2; log fold change (LogFC) = 0.263, FDR = 5.01 ×  10–6). The most significantly 
downregulated gene after sleep deprivation was Cold Inducible RNA Binding Protein (Cirbp; LogFC = − 0.516, FDR = 4.83 ×  10–6)
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for genes upregulated by sleep deprivation, analysis using 
PANTHER:CC revealed that the genes downregulated by 
sleep deprivation are associated with many different cel-
lular components (Fig. 3b and Additional file 2: Table S7). 
Dendrites, postsynaptic membranes, and the synapse 
were the three cellular compartments most significantly 
associated with genes downregulated after sleep depriva-
tion. Downregulated genes were also significantly asso-
ciated with the cytoplasm and cytoskeletal components. 
These results strongly suggest that sleep deprivation dif-
ferentially regulates genes, at least in part, based on their 
biological function, rather than a more global regulation 
of gene expression.

Confirmation of gene expression changes 
in the hippocampus after sleep deprivation
Based upon molecular function, we chose a subset of 
the differentially expressed genes from the RNA-Seq 
experiment to validate in independent sleep deprivation 
experiments (Fig. 4; non-sleep deprived mice n = 6, sleep 
deprived mice n = 6). Given the significance of pathways 
involved in RNA processing including RNA splicing, we 
tested the effects of sleep deprivation on the expression 
of four genes, Cirbp, Srsf7, Tra2a, and Upf2, with known 
functions in RNA processing or as RNA binding pro-
teins (Fig. 4a). Using RT-qPCR with gene specific prim-
ers (Additional file 2: Table S1), we confirmed that these 
genes demonstrated significant changes with the same 
directionality after acute sleep deprivation. Immediate 
early genes and transcription factors have been previ-
ously identified as changing after acute sleep deprivation 
in the hippocampus and other brain regions [47–52]. 
We independently confirmed that acute sleep depriva-
tion differentially regulated two positive transcription 
factors and a repressor of transcription, Nfil3, Nr4a1 
and Erf (Fig.  4b). We also validated through RT-qPCR 
four genes involved in cellular signaling that were sig-
nificantly changed after sleep deprivation, Pdgfrb, Dusp5, 
Dusp6, and Ackr3 (Fig.  4c). Acute sleep deprivation has 
been previously shown to induce changes in the cytoskel-
eton and decrease dendritic spines in the CA1 and den-
tate gyrus of the hippocampus [20, 22]. We validated the 
effects of sleep deprivation on two genes of interest that 
act in the postsynaptic dendrites, Filip1 and Arc (Fig. 4d). 

All the genes included were significantly changed in the 
independent cohort.

As a negative control to validate our analysis, we chose 
three genes with varying functions that showed no sig-
nificant difference in expression after sleep depriva-
tion in the previous microarray study (GEO accession 
GSE33302) or between non-sleep deprived and sleep 
deprived samples in our RNA-Seq data set: Laminin 
Subunit Alpha 5 (Lama5), Frizzled Class Receptor 5 
(Fzd5), and Transient Receptor Potential Cation Chan-
nel Subfamily M Member 3 (Trpm3). Using RT-qPCR, 
we quantified the expression of these three genes after 
sleep deprivation from the independent cohort of ani-
mals. As predicted, we did not find significant differences 
in the expression levels of these genes between non-sleep 
deprived and sleep deprived animals (Additional file  1: 
Figure S2).

Three hours of sleep recovery reverses the effects of acute 
sleep deprivation on mRNA abundance
Previous studies have shown that 2.5–3  h of recovery 
sleep following acute sleep deprivation is sufficient to 
reverse many of the effects of sleep deprivation on gene 
expression, cellular signaling that affects protein syn-
thesis, and dendritic structure [22, 25, 26, 53, 54]. How-
ever, recovery sleep following acute sleep deprivation 
is unable to restore the deficits observed in long-term 
hippocampus dependent memory [15]. Consequently, 
we investigated whether recovery sleep following acute 
sleep deprivation was sufficient to normalize mRNA 
abundance for a subset of genes, including those asso-
ciated with synaptic plasticity and memory (Fig.  5). We 
performed sleep deprivation experiments followed by 
3  h of recovery sleep. Control animals were euthanized 
at the same time as experimental animals to avoid circa-
dian confounds in gene expression (n = 6 for non-sleep 
deprived mice and n = 7 for sleep deprived with recovery 
sleep group). For most genes, we found that 3 h of recov-
ery sleep induced a return to baseline gene expression 
levels with no significant changes when sleep deprived 
plus recovery sleep mice were compared with non-sleep 
deprived mice: Cirbp, Tra2a, Upf2, Nfil3, Erf, Pdgfrb, 
Dusp5, Dusp6, Ackr3, and Filip1. Notably, the transcrip-
tion factor Nr4a1 remained significantly upregulated in 

(See figure on next page.)
Fig. 2 Distinct biological processes and cellular components are enriched for genes upregulated after acute sleep deprivation. a Using Network 
Analyst software and the PANTHER: Biological Processes (BP) classification to perform overrepresentation analysis (ORA), pathways enriched for 
upregulated genes were identified. RNA splicing and Apoptotic Process were the most significantly enriched networks (Adjusted P-value = 0.025). 
These top networks have been expanded to show the genes that are involved and upregulated after sleep deprivation. b Using Network Analyst 
software and the PANTHER: Cellular Components (CC) classification to perform ORA we identified cellular components enriched for genes 
upregulated after sleep deprivation. The nucleus is the most significantly enriched (Adjusted P-value = 1.74 ×  10–9). The size of each node represents 
the number of hits from the inputted gene list
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recovery mice compared to non-sleep deprived mice; 
however, the fold change was significantly lower in the 
sleep recovery mice (mean fold change = 1.15) compared 
to that seen for gene expression after sleep deprivation 
(mean fold change = 1.60). Furthermore, recovery sleep 
significantly repressed mRNA abundance for the splicing 
factor Srsf7, a component of the spliceosome, that was 
upregulated after sleep deprivation. These results sug-
gest that recovery sleep reverses acute sleep deprivation 
induced changes in gene expression for most genes, but 
exceptions occur for some genes which may affect RNA 
splicing or transcription, potentially providing a link to 
the more persistent effects of acute sleep deprivation.

Acute sleep deprivation affects different gene functions 
in the transcriptome and translatome
Sleep deprivation can affect gene regulation at multiple 
levels with decreases in protein synthesis apparent in the 
hippocampus in addition to changes in mRNA abun-
dance. Recent research investigated the effects of acute 
sleep deprivation on the pool of mRNA transcripts asso-
ciated with ribosomes (TRAP-Seq) in excitatory neurons, 
which denotes the sleep deprived translatome [27]. To 
discriminate the effects of sleep deprivation on the tran-
scriptome and the translatome, we performed a compar-
ative analysis of the results from the current study with 
the translatome of excitatory neurons from published 
data (GEO Series accession GSE156925) using an FDR 
of < 0.10. Although both research studies used the same 
method of sleep deprivation performed at the same cir-
cadian time, we found that only 111 genes were similarly 
differentially regulated after sleep deprivation in both the 
transcriptome and translatome (Fig.  6a and Additional 
file 2: Table S11). The limited overlap between the trans-
latome and transcriptome is consistent with the limited 
overlap found when the translatome was previously com-
pared to the microarray data set of Vecsey and colleagues 
[27]. As the TRAP-Seq data set is enriched for excitatory 
neurons, we predicted that the number of differentially 
expressed genes after sleep deprivation from the RNA-
Seq data set would be greater as the RNA-Seq samples 
were prepared from the whole hippocampus including 
inhibitory neurons and glia. We found that 1,035 genes 
were differentially regulated in the transcriptome, but not 

in the translatome and 154 genes were regulated in the 
translatome but not in the whole transcriptome.

To provide additional insight into the impact of sleep 
deprivation on the transcriptome and translatome, we 
performed pathway analyses using GO:MF for genes 
commonly regulated at both levels, genes regulated 
solely in the transcriptome, and genes that were uniquely 
regulated in the translatome. Pathway analysis of the 
genes regulated similarly after sleep deprivation in the 
transcriptome and the translatome revealed two major 
groups of gene enrichment (Fig.  6b and Additional 
file  2: Table  S12). The first group of enriched pathways 
included protein kinase and protein phosphatase path-
ways suggesting that sleep deprivation strongly affects 
cell signaling pathways. Secondly, there was enrichment 
of potassium channel activity pathways suggesting that 
sleep deprivation affects neural activity through gene 
regulation. Analysis of genes regulated solely in the tran-
scriptome highlighted pathways involved in transcription 
factor binding, histone deacetylase activity, nucleotide 
binding, nucleotide exchange factor activity and small 
GTPase regulator activity (Fig.  6c and Additional file  2: 
Table  S13). In contrast, the translatome enrichment 
networks included the unfolded protein binding path-
way, protein binding, peptide binding, protein dimeriza-
tion, and ubiquitin binding (Fig. 6d and Additional file 2: 
Table S14). This comparative analysis highlights the mul-
tiple levels of gene regulation impacted by sleep depriva-
tion with distinct consequences.

Discussion
Numerous behavioral and molecular studies have dem-
onstrated the requirement of sleep for memory and neu-
ral plasticity (reviewed in [55, 56]). Previous research 
has shown that the hippocampus is highly susceptible 
to the effects of acute sleep deprivation inhibiting long-
term memory with changes apparent in neuronal con-
nectivity and morphology [14, 20, 22, 57, 58]. Although 
studies using mice and rats have shown that acute sleep 
deprivation affects gene expression in the hippocampus 
and the forebrain [25, 50, 54, 59–64], much of the pre-
vious research has focused on specific gene sets or used 
microarray analysis, rendering an incomplete picture of 
the effects of sleep deprivation on gene expression. Thus, 

Fig. 3 Distinct biological processes and cellular components are enriched for downregulated genes after acute sleep deprivation. a Pathway 
analysis using the PANTHER:BP classification to perform ORA, pathways enriched for downregulated genes were identified. Cell adhesion is the 
most significantly enriched network (Adjusted P-value = 2.91 ×  10–3). The cell adhesion network has been expanded to show the genes that are 
involved and downregulated after sleep deprivation. b Using Network Analyst software and the PANTHER:CC classification to perform ORA we 
identified enriched cellular components for genes downregulated after sleep deprivation. The dendrite and postsynaptic membrane are the most 
significantly enriched cellular components (Adjusted P-value = 4.28 ×  10–7). The size of each node represents the number of hits from the inputted 
gene list

(See figure on next page.)
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we conducted an unbiased investigation of the effects of 
sleep deprivation on hippocampal gene expression using 
RNA-Seq. As predicted, the RNA-Seq experiments pro-
vided a more in-depth investigation into the effects of 
sleep deprivation on the transcriptome with more genes 
analyzed than previous microarray experiments. We 
found that five hours of sleep deprivation upregulated 
or downregulated gene expression dependent upon the 

biological functions and cellular components associ-
ated with the genes. The RNA-Seq results were validated 
through independent sleep deprivation and recovery 
experiments followed by RT-qPCR for genes of interest.

Analysis of genes upregulated by sleep deprivation 
revealed associations with nuclear functions including 
genes involved in RNA binding, processing, and splic-
ing potentially increasing RNA splicing misregulation, 
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Fig. 4 RT-qPCR validation of RNA-Seq results. From an independent cohort of mice (n = 6 in each group), RT-qPCR was used to validate the 
findings of chosen genes. a Four genes related to RNA binding proteins and/or splicing: Cirbp (P-value = 1.9 ×  10–3), Srsf7 (P-value = 1.6 ×  10–3), 
Tra2a (P-value = 3.0 ×  10–3), and Upf2 (P-value = 0.0168); b three genes related to transcriptional activity: Nfil3 (P-value = 0.0388), Nr4a1 
(P-value = 1.0 ×  10–4), and Erf (P-value = 2.6 ×  10–3); c four genes related to cellular signaling: Pdgfrb (P-value = 3.2 ×  10–3), Dusp5 (P-value = 2.0 ×  10–

4), Dusp6 (P-value = 2.0 ×  10–3), and Ackr3 (P-value = 2.8 ×  10–3); and d two genes related to cytoskeleton: Filip1 (P-value = 2.1 ×  10–3) and Arc 
(P-value < 0.0001). Data are presented as mean ± SEM and normalized against two housekeeping genes (Tubulin and Hprt). Differences are 
significant at * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P < 0.0001, and evaluated using an unpaired t-test
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nonsense mediated decay and RNA degradation. For 
example, the Upf2 gene, a mediator of nonsense medi-
ated decay, was upregulated by sleep deprivation con-
sistent with the hypothesis that sleep deprivation could 
result in changes in RNA splicing that lead to increased 
RNA degradation. Misregulation of RNA splicing 

affects neural plasticity and function (reviewed in [50]). 
Dysregulation of RNA binding proteins and splicing 
has been associated with aberrant neural function and 
neurodegenerative diseases including Alzheimer’s dis-
ease (reviewed in [65, 66]). Thus, acute sleep depriva-
tion has the potential to induce widespread changes 
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Fig. 5 RT-qPCR analysis of chosen genes following recovery from sleep deprivation. An independent cohort of mice were allowed to recover 
from acute sleep deprivation for 3 h (n = 7) and compared to non-sleep deprived mice (n = 6) using RT-qPCR analysis. a Four genes related to 
RNA binding proteins and/or splicing: Cirbp (P-value = 0.0674), Srsf7 (P-value = 0.0356), Tra2a (P-value = 0.6881), and Upf2 (P-value = 0.3009); b 
three genes related to transcriptional activity: Nfil3 (P-value = 0.4402), Nr4a1 (P-value = 0.0216), and Erf (P-value = 0.8060); c four genes related to 
cellular signaling: Pdgfrb (P-value = 0.1771), Dusp5 (P-value = 0.3339), Dusp6 (P-value = 0.1915), and Ackr3 (P-value = 0.0565); and d one related to 
cytoskeleton: Filip1 (P-value = 0.3342). Data are presented as mean ± SEM and normalized against two housekeeping genes (Tubulin and Hprt). 
Differences are significant at * P < 0.05 and evaluated using an unpaired t-test. n.s. denotes non-significant differences (P > 0.05)
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in neuronal and synaptic plasticity through changes in 
RNA processing.

In the present study, we found that significant down-
regulation of genes by sleep deprivation was associated 
with cell adhesion and synaptic protein functions includ-
ing Nlgn1, Nlgn3, Ncam1, Nectin3 and Nectin4. Cell 
adhesion molecules, such as the post-synaptic adhesion 
protein Neuroligin-1 has been previously associated with 
sleep regulation ([64] and reviewed in [67]). Sleep depri-
vation downregulated metalloproteases such as Adam23, 
involved in cell–cell interactions. Although multiple cel-
lular components were significantly enriched for genes 
downregulated by sleep deprivation, the top three cellular 
locations were the dendrite, postsynaptic membrane, and 
the synapse. Postsynaptic density scaffolding proteins, 
such as members of the Disc large associated protein 
family Dlgap1 and Dlgap3, were significantly downregu-
lated by sleep deprivation. Thus, the probable outcomes 
of the downregulation of genes by sleep deprivation are 
weakened synaptic plasticity and cell–cell interactions. 
Our results are consistent with previously observed 
decreases in hippocampal plasticity seen following brief 
periods of sleep deprivation [68–71]. Sleep deprivation 
appears to have some of the largest cellular impacts at 
the synapse as recent studies on whole forebrain tissue 
found that acute sleep deprivation reduced the rhythms 
in protein phosphorylation of synaptic proteins [72, 73]. 
Although differences in the effect of sleep deprivation on 
transcription and translation are apparent between brain 
regions ([50, 53] and reviewed in [5]), acute sleep depri-
vation also affects synaptic proteins in the cortex [74].

Three hours of recovery sleep following acute sleep 
deprivation normalized gene expression for most genes 
we investigated, similar to what has been observed for 
many genes in the hippocampus and the cortex [25, 54]. 
However, we did find that the transcription factor Nr4a1 
remained upregulated after recovery sleep, albeit to a 
smaller extent. The Nr4a family of transcription factors 
are ligand-independent nuclear receptors regulated by 

CREB that function in long-term hippocampus depend-
ent memory [75–78]. Inhibition of Nr4a transcriptional 
activity impairs long-term memory, although short-term 
memory is not affected [77]. Nr4a1 is highly expressed in 
the hippocampus and is significantly upregulated during 
learning acquisition and memory consolidation for con-
textual fear conditioning and spatial object location train-
ing [75, 77]. Thus, the aberrant regulation of Nr4a1 after 
sleep deprivation and recovery sleep suggests a possible 
mechanism for the interference with long-term memory 
consolidation observed with acute sleep deprivation 
[15]. In addition, the RNA splicing factor Srsf7 reversed 
direction showing a significant decrease in expression 
after recovery sleep. Recently, Srsf7 was shown to affect 
polyadenylation of the 3’UTR with increased Srsf7 result-
ing in shorter polyA tails [79]. Polyadenylation and the 
length of the 3’UTR affects mRNA stability, nuclear 
export, and translation efficiency. Dysfunctional regula-
tion of polyadenylation has been implicated in multiple 
diseases including neurological diseases [80]. Our results 
indicate that recovery from sleep deprivation is gene spe-
cific potentially extending the impacts of acute sleep dep-
rivation, rather than a universal return of gene expression 
to baseline levels.

Previously, expression of the transcription factor Elk1 
in the hippocampus was shown to remain high after 
2.5  h of recover sleep [25]. Studies in the cortex found 
that some genes normalize expression levels quickly 
with recovery sleep, while other genes require up to 6 h 
of recovery sleep to return to baseline levels [54]. Of 
note, genes that responded less quickly to recovery sleep 
included genes involved in RNA splicing and RNA bind-
ing proteins [54]. Thus, in addition to the more immedi-
ate effects of acute sleep deprivation on gene expression 
and the subsequent impact on synaptic plasticity and 
cellular signaling, acute sleep deprivation may also exert 
longer lasting effects on gene regulation through the con-
tinued dysregulation of transcription factors and genes 
related to RNA processing. Further cell-specific research 

(See figure on next page.)
Fig. 6 Acute sleep deprivation causes distinct transcriptome and translatome patterns. a We compared the top RNA-seq genes (1,146 genes) to 
our previously generated TRAP-Seq sleep deprivation results (265 genes) and identified 1,035 genes only identified as differentially expressed using 
RNA-seq (transcriptome), 154 genes only identified as differentially expressed using TRAP-Seq (translatome), and 111 genes found in both. b Using 
Network Analyst software and the Gene Ontology (GO): Molecular Function (MF) classification, pathways enriched for genes found using both 
RNA-seq and TRAP-Seq. The most significant pathway was Protein kinase inhibitor activity (P-value = 2.01 ×  10–3, Adjusted P-value = 0.366) and this 
network has been expanded to show the genes that are transcribed and translated after sleep deprivation. c Using Network Analyst software and 
the GO:MF classification, pathways enriched for genes found using only RNA sequencing. The most significant pathway was Rho guanyl nucleotide 
exchange factor activity (P-value = 3.07 ×  10–4, Adjusted P-value = 0.119) and this network has been expanded to show the genes that are involved 
and transcribed after sleep deprivation. d Using Network Analyst software and the GO:MF classification, pathways enriched for genes found using 
only TRAP-Seq. The most significant pathway was Unfolded protein binding (Adjusted P-value = 0.021) and this network has been expanded 
to show the genes that are involved and translated after sleep deprivation. Networks that survive correction for multiple testing (Adjusted 
P-value < 0.05) are emphasized with dark pink. The size of each node represents the number of hits from the inputted gene list
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needs to be completed to fully investigate the persistent 
effects of acute sleep deprivation on RNA splicing and 
processing.

The canonical view of gene regulation and the central 
dogma of molecular biology suggest that RNA and pro-
tein abundance are highly correlated. However, as under-
standing of RNA processing increased, it has become 
apparent that gene regulation occurs at multiple levels 
(reviewed in [81]). Acute sleep deprivation, in particu-
lar, appears to distinctly impact transcription and trans-
lation as we found when we compared the results of the 
current RNA-Seq data set with the translatome of excita-
tory neurons in the hippocampus after sleep depriva-
tion. Although differences arose between these data sets 
due to cell type differences, genes impacted similarly by 
sleep deprivation in the transcriptome and translatome 
encompassed genes involved in kinase and phosphatase 
signaling pathways, as well as cation and potassium chan-
nels. Changes in the expression of membrane channels 
and cellular signaling pathways have the potential to 
rapidly impact synaptic strength and plasticity following 
sleep deprivation. A large number of genes, more than 
1,000, were upregulated in the transcriptome, but not 
in the translatome. Genes regulated only at the level of 
the transcriptome included genes involved in RNA pro-
cessing, nucleotide binding and small GTPase signaling. 
Potentially genes upregulated in the transcriptome, but 
not the translatome, may reflect transcripts with alter-
native splicing that are not translated efficiently or that 
undergo degradation. Alternatively, genes upregulated 
in the transcriptome by sleep deprivation may also be 
sequestered in dynamic RNA granules that may then 
be released when conditions normalize (reviewed in 
[82–84]). Notably, there are also genes downregulated 
in the transcriptome but not in the translatome. Poten-
tially, the translatome reflects isoform specific transcript 
association with the ribosome, while our RNA-Seq data 
set reflects total RNA abundance. A comparatively small 
number of genes, approximately 150 genes, showed sepa-
rate regulation by sleep deprivation in the translatome of 
excitatory neurons but not in the overall transcriptome 
including genes associated with the unfolded protein 
response and ubiquitination suggesting that additional 
regulation of protein degradation may occur with sleep 
deprivation. The analyses presented provide further 
insight into the nuanced effects of sleep deprivation on 
gene regulation at multiple levels.

The results presented here provide an unbiased in-
depth perspective of the effects of acute sleep depriva-
tion on gene expression in the hippocampus. Notably, 
our results clearly demonstrate that sleep deprivation dif-
ferentially upregulates or downregulates genes depend-
ent upon biological function, instead of a more general 

mechanism resulting in global changes in gene expres-
sion. Moreover, our analyses provided new insight into 
the effects of sleep deprivation revealing the strong asso-
ciation of genes upregulated by sleep deprivation with 
nuclear functions. In contrast, genes downregulated by 
sleep deprivation were associated with multiple cellular 
components, in particular, dendrites and synapses. These 
distinctions highlight the need for future research inves-
tigating the effects of sleep deprivation on the hippocam-
pus taking advantage of technological advances in single 
cell and spatial transcriptomics. Although the results 
presented here establish a strong foundation for com-
parison with data from other brain regions to more pre-
cisely understand brain region specific impacts of sleep 
deprivation, further research is needed to understand the 
persistent effects of acute sleep deprivation on long-term 
memory, as well as to identify the effects of chronic sleep 
restriction on the hippocampus.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13041- 021- 00835-1.

Additional file 1: Figure S1. Normalization of RNA sequencing data. Dis-
tributional differences in GC content and variability in sequencing depth 
are sources of technical variability in RNA Sequencing data. GC content 
distributions (a) before normalization, (b) after full quantile GC content 
normalization, and (c) upper quartile sequencing depth normalization. 
Relative log expression (RLE) plots (d) before normalization, (e) after full 
quantile GC content normalization, and (f ) upper quartile sequencing 
depth normalization. Principal component analysis (PCA) plots (g) before 
normalization, (h) after full quantile GC content normalization, and (i) 
upper quartile sequencing depth normalization. Figure S2. Validation of 
negative controls. From an independent cohort of mice (n = 6 in each 
group), RT-qPCR was used to validate the findings of negative control 
genes that showed no differential expression in the RNA sequencing 
results. (a) Lama5 (P-value = 0.9393), (b) Fzd5 (P-value = 0.1573), and (c) 
Trpm3 (P-value = 0.5076). Data are presented as mean ± SEM and normal-
ized against two housekeeping genes (Tubulin and Hprt). Comparisons 
are evaluated using an unpaired t-test and n.s. denotes non-significant 
differences (P > 0.05).

Additional file 2: Table S1. RT-qPCR primers used. Validation of RNA-seq 
results was performed using RT-qPCR, SYBR technology, and custom 
designed primers. Table S2. Genes significantly upregulated by sleep 
deprivation. We compared non-sleep deprived and sleep deprived mice 
and identified 507 genes with a false discovery rate (FDR) < 0.1 that 
were upregulated after sleep deprivation. Gene types include antisense, 
bidirectional promoter long non-coding RNA (lncRNA), long intergenic 
non-coding RNA (lincRNA), processed transcript, protein coding, Small 
Cajal body-specific RNA (scaRNA), to be experimentally confirmed (TEC), 
transcribed processed pseudogene, transcribed unprocessed pseudogene, 
unitary pseudogene, and unprocessed pseudogene. LogFC denotes Log 
Fold Change, LogCPM denoted Log Counts Per Million, and F denotes the 
F-statistic from edgeR’s quasi-likelihood pipeline. Table S3. Enrichment 
networks in upregulated genes using PANTHER:BP. We used Network 
Analyst software and the PANTHER:Biological Processes (BP) classification 
to perform overrepresentation analysis (ORA) and identified 16 pathways 
enriched for upregulated genes. Hits represent the number of upregulated 
genes found in each network. Table S4. Cellular components enriched in 
upregulated genes using Panther:CC. We used Network Analyst software 
and the PANTHER: Cellular Components (CC) classification to perform 
overrepresentation analysis (ORA) and identified 10 networks enriched 
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for upregulated genes. Hits represent the number of upregulated genes 
found in each network. Table S5. Genes significantly downregulated by 
sleep deprivation. We compared sleep deprived and undisturbed mice 
and identified 639 genes with an FDR < 0.1 that were downregulated after 
sleep deprivation. Gene types include antisense, bidirectional promoter 
lncRNA, lincRNA, microRNA, processed pseudogene, processed transcript, 
protein coding, sense intronic, TEC, transcribed processed pseudogene, 
and transcribed unprocessed pseudogene. LogFC denotes Log Fold 
Change, LogCPM denoted Log Counts Per Million, and F denotes the 
F-statistic from edgeR’s quasi-likelihood pipeline. Table S6. Enrichment 
networks in downregulated genes using PANTHER:BP. We used Network 
Analyst software and the PANTHER:BP classification to perform ORA and 
identified 19 pathways enriched for downregulated genes. Hits represent 
the number of downregulated genes found in each network. Table S7. 
Cellular components enriched in downregulated genes using PANTHER:CC. 
We used Network Analyst software and the PANTHER:CC classification 
to perform ORA and identified 19 networks enriched for upregulated 
genes. Hits represent the number of downregulated genes found in each 
network. Table S8. Genes significantly dysregulated by sleep deprivation 
(FDR < 0.05). We compared sleep deprived and undisturbed mice and 
identified 636 genes with an FDR < 0.05 that were either upregulated or 
downregulated after sleep deprivation. Gene types include antisense, lin-
cRNA, processed pseudogene, processed transcript, protein coding, sense 
intronic, TEC, transcribed processed pseudogene, transcribed unprocessed 
pseudogene, and unitary pseudogene. LogFC denotes Log Fold Change, 
LogCPM denoted Log Counts Per Million, and F denotes the F-statistic from 
edgeR’s quasi-likelihood pipeline. Table S9. Genes significantly dysregu-
lated by sleep deprivation (FDR < 0.2). We compared sleep deprived and 
undisturbed mice and identified 2294 genes with an FDR < 0.2 that were 
either upregulated or downregulated after sleep deprivation. Gene types 
include antisense, bidirectional promoter lncRNA, lincRNA, microRNA, 
Mt_tRNA, polymorphic pseudogene, processed pseudogene, processed 
transcript, protein coding, pseudogene, scaRNA, sense intronic, snoRNA, 
snRNA, TEC, transcribed processed pseudogene, transcribed unprocessed 
pseudogene, unitary pseudogene, and unprocessed pseudogene. LogFC 
denotes Log Fold Change, LogCPM denoted Log Counts Per Million, and F 
denotes the F-statistic from edgeR’s quasi-likelihood pipeline. Table S10. 
Genes found to be significantly dysregulated by sleep deprivation using 
microarray and RNA-seq. We compared our RNA-seq data to a previously 
completed microarray sleep deprivation study (GEO accession GSE33302) 
and identified 226 genes with an FDR < 0.1 that were either upregulated or 
downregulated in both studies. All data within this table is from the RNA-
seq study. LogFC denotes Log Fold Change, LogCPM denoted Log Counts 
Per Million, and F denotes the F-statistic from edgeR’s quasi-likelihood 
pipeline. Table S11. Comparison of differentially expressed genes after 
sleep deprivation between whole hippocampal transcriptome and TRAP-
Seq from excitatory neurons. To identify the sleep deprivation transcrip-
tome and translatome we compared RNA-seq and TRAP-Seq datasets. The 
first column shows 1035 differentially expressed genes only found using 
RNA sequencing, the second column shows 111 differentially expressed 
genes found in both RNA sequencing and TRAP-Seq, and the third column 
shows 154 differentially expressed genes only found using TRAP-Seq. Lists 
are sorted alphabetically. Table S12. Molecular function networks enriched 
in genes significantly affected by sleep deprivation in RNA-seq and TRAP-
Seq data sets using GO:MF. We used Network Analyst software and the 
Gene Ontology (GO): Molecular Function (MF) classification to perform 
ORA and identified 18 networks enriched for genes differentially expressed 
using RNA-seq and TRAP-Seq. Hits represent the number of genes found 
in each network. Table S13. Molecular function networks for genes dif-
ferentially regulated by sleep deprivation only in whole hippocampal tran-
scriptome using GO:MF. We used Network Analyst software and the Gene 
Ontology (GO): Molecular Function (MF) classification to perform ORA and 
identified 27 networks enriched for genes only differentially expressed 
using RNA sequencing. Hits represent the number of genes found in each 
network. Table S14. Molecular function networks for genes differentially 
regulated by sleep deprivation only in the TRAP-Seq data set using GO:MF. 
We used Network Analyst software and the GO:MF classification to perform 
ORA and identified 12 networks enriched for genes differentially expressed 
using only TRAP-Seq. Hits represent the number of genes found in each 
network.
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