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Abstract 

Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, 
gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electro-
physiological recordings and computational approaches that attempt to decode how the brain transforms inputs into 
functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that 
allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted 
fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches 
that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell 
ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate 
for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the 
emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and tem-
poral patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of 
brain states and behavior.
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Introduction
Systems neuroscience studies are focused on how par-
ticular circuits and large brain networks modulate brain 
states and behavior. Evolution has shaped circuits and 
brain networks to include a variety of cell types and a 
wide range of complex molecular properties. For exam-
ple, within each cell of these networks, hundreds of thou-
sands of molecules form complex systems that modulate 
the cellular responses that shape the output of these 
networks. Novel powerful techniques, that allow the 
tracking and manipulation of these molecular systems, 
in a cell specific manner and in real time, have fueled 
the emergence of molecular systems neuroscience, a 

sub-discipline of systems neuroscience that studies how 
the spatial and temporal patterns of molecular systems 
modulate circuits and brain networks, and consequently 
shape the properties of brain states and behavior. Molec-
ular systems neuroscience studies attempt to explain 
brain processes by connecting molecular mechanisms 
to cellular and systems mechanisms in multiple brain 
regions engaged in processing information and generat-
ing behavior. Here, we will introduce this new field and 
review key examples of the exciting technological devel-
opments that motivated its emergence.

Systems neuroscience is traditionally focused on how 
the activity of neuronal circuits gives rise to internal 
brain states and behavior. Many of the studies in this 
field have typically involved recordings of action poten-
tials and other electrophysiological properties in specific 
brain regions, such as the visual cortex and hippocampus 
of awake behaving animals. The principal goal of these 
studies has been to explain how a particular electro-
physiological phenomenon accounted for the observed 
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behavior. For example, the discovery in the hippocampus 
of neurons that fire in specific places (i.e., place fields) 
was compelling evidence for cognitive maps [1, 2]. In 
another example, the discovery of cells in the visual cor-
tex that fired preferentially to simple stimuli, such as 
gradients of a particular angle, and other cells that pre-
ferred more complex stimuli, such as edges and move-
ment, helped to explain how the visual system processes 
complex visual scenes from simpler stimuli within those 
scenes [3–6]. Another cornerstone of systems neurosci-
ence has been analytical and theoretical approaches [7–9] 
that attempt to decode how the brain transforms inputs 
into functional outputs (e.g., how visual signals are used 
in the generation of visual perceptions and even cogni-
tive maps). The computational tools in the field have deep 
roots in physics and engineering.

More recently, systems neuroscience has received an 
infusion of approaches and techniques that allow the 
manipulation (e.g., optogenetics [10–12], chemogenetics 
[13, 14]) and imaging (e.g., two-photon imaging [15–18], 
head mounted fluorescent microscopes [19–24]) of neu-
rons, neurocircuits, their inputs and outputs in awake 
behaving animals. This exciting technological infusion 
has not only changed the questions asked, but even trans-
formed the very epistemological basis of the field away 
from a reliance on the predictive power of theoretical 
approaches as the ultimate arbiter of ideas and hypoth-
eses. Instead, the field is now relying increasingly more 
on the convergence of evidence and consistency of find-
ings as the means to ground ideas and discoveries. For 
example, recent studies have been able to not only image 
neurons (e.g. activity and morphology) involved in a par-
ticular memory in real time as animals learn and remem-
ber (e.g., with GCAMP6f and head-mounted fluorescent 
microscopes), but also control the expression of the same 
memory by artificially activating or inhibiting those neu-
rons through optogenetics and/or chemogenetics [25–
27]. Similarly, studies have both imaged the neurons and 
manipulated the circuits involved in decision making, 
emotion, working memory, anxiety, vision, etc.

Novel approaches that allow the imaging and manipu-
lation of specific molecular mechanisms in specific cells, 
cell ensembles and brain regions, promise to once again 
infuse systems neuroscience with novel ideas, emphases 
and directions. It is unlikely that all of the properties of 
systems and behavior will be reduced to molecular terms. 
Instead, we propose that the ability to image and manipu-
late specific molecular mechanisms in target cellular or 
subcellular sites, in specific circuits and brain regions, 
will help reveal unsuspected systems properties and 
functions.

There are three important challenges to traditional 
systems neuroscience that are driving the emergence of 

a more molecularly oriented version of the field. First, 
evolution molded the complex properties of multicellu-
lar systems by shaping over time the molecular proper-
ties of gene products. Thus, it is reasonable to propose 
that there are meaningful functional relations between 
genes, the proteins they encode, and (a) the processes 
that assemble circuits during development, and (b) the 
mechanisms that modulate their function in adult organ-
isms. Inspired by evolution, insights on the function of 
genes in specific cells, cell systems and brain regions, may 
allow us to cut through the ever-growing complexity of 
how systems affect internal states and behavior.

Second, besides electrophysiological properties, other 
cell biological properties of neurons and other cells, such 
as mechanisms of transcription, translation, neuromodu-
lation, receptor function, etc. also have a critical modula-
tory role in behavior. Indeed, there is growing evidence 
for the reasonable hypothesis that the orchestration 
of these mechanisms in neuronal ensembles is critical 
for internal brain states and behavior. Therefore, imag-
ing and manipulating these molecular mechanisms has 
already and will continue to yield insights into how cel-
lular systems control behavior.

Finally, there is now compelling evidence that the com-
plex properties of behavior can be traced back to mech-
anisms that involve nearly every cell type in the brain, 
including, for example, astrocytes, oligodendrocytes and 
microglia. It is also reasonable to propose that the care-
ful temporal and spatial organization of the myriad of 
molecular mechanisms regulating and orchestrating the 
function of these different cell types in the brain could 
make unique contributions to internal states and behav-
ior that go well beyond the important contributions of 
neurocircuits. Accordingly, emerging molecular manip-
ulation and imaging technologies, that together endow 
unprecedented cellular, spatial and temporal specificity, 
are being used to study the behavioral contributions of 
a number of molecular mechanisms in brain cell types 
other than neurons. The key thesis for a more molecu-
larly oriented and broader systems neuroscience is that 
evolutionarily shaped molecular mechanisms in these 
cell systems may help explain and predict the vexing 
complexity of the brain’s internal states and behavior.

New technologies have traditionally been at the heart 
of the generation and evolution of new perspectives 
and transformative discoveries in science. Next, we will 
review an exciting and powerful new set of molecular 
imaging and manipulation techniques that are transform-
ing multiple fields in biology, and that we propose are 
fueling the emergence of molecular systems neurosci-
ence. These new techniques allow for the unprecedented 
temporal, cellular and subcellular manipulation and 
imaging of specific molecular mechanisms in targeted 
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cell systems, circuits and brain regions of behaving 
animals.

New tools, methods and approaches unfailingly change 
a field by providing novel perspectives and opportunities 
for study. We identify three major areas of novel technol-
ogy development that we predict will have a significant 
impact in systems neuroscience: (a) new developments in 
in vivo imaging techniques, including imaging of molecu-
lar mechanisms in specific cell types besides neurons, (b) 
new molecular sensors that can report on the activity of 
specific molecular mechanisms in a cell specific manner, 
and (c) new molecular actuators that can either activate 
or inhibit molecular mechanisms at a cellular or even 
sub-cellular level. These dramatic recent developments 
are opening systems neuroscience to more molecular and 
less neuron-centric perspectives.

Imaging systems
From an imaging standpoint, one of the significant 
innovations of the last decade was the introduction of 
miniaturized head mounted fluorescent microscopes 
(miniscopes) that can record from hundreds of neurons 
(or other cells) for many days in freely moving and behav-
ing animals, including mice [19–24]. This one-photon 
epifluorescence imaging approach uses a small CMOS 
(Complementary metal–oxide–semiconductor) sensor 
(similar to the technology in phone cameras), encased 
in a very light weight frame. The miniscopes also include 
an LED (light-emitting diode) that can be used for photo 
excitation of molecular sensors, such as calcium sensors.

Imaging with miniscopes involves removal of a small 
segment of the skull and possibly also brain tissue 
overlaying the imaging target, as well as the use of an 
implanted lens, such as a relay lens, to facilitate visuali-
zation of the target cells by the CMOS camera. Amongst 
other things, imaging with miniscopes facilitates the 
simultaneous visualization of a large population of cells, 
allowing for the detection of coordinated activity among 
groups of cells and thus identifying networks of commu-
nication within a cell population. Importantly, the nature 
of this type of imaging allows for longitudinal record-
ings of the same cells over several days, or even weeks 
[28, 29] in behaving animals. The size and weight of the 
miniscope allows for its use not just in mice and other 
rodents, but even in bats and birds. Constant improve-
ments in miniscope design continue to reduce its size 
and weight and even allow for wireless recordings.

The ability of miniscopes to simultaneously assay at 
least 2 different emission/excitation spectra [26] ena-
bles not only imaging of two different molecular tar-
gets, but also simultaneous optogenetic manipulation 
and imaging by using one wavelength to excite the sen-
sor’s fluorescence, and another wavelength to trigger an 

actuator (for example, inhibitory or excitatory opsins). 
This opened up the exciting possibility of tracking and 
manipulating molecular function in specific cells and 
circuits of behaving animals, such as mice. The com-
bination of miniscope imaging and electrophysiologi-
cal recordings with silicon probes, for example, allows 
researchers to simultaneously record very different 
properties of neurons and circuits during behavior. 
Information from electrophysiology and imaging com-
plement each other well, due to the different strengths 
and weaknesses of these two approaches. For exam-
ple, electrophysiology allows for recordings with much 
higher temporal resolution and for measurements of 
brain activity from large brain regions, while imag-
ing enables stable longitudinal recordings of the same 
cells over many days. Studies comparing electrophysi-
ological and calcium imaging data have already uncov-
ered some unexpected findings. For instance, a recent 
report indicated that while calcium activity increased 
during sharp wave ripple trains, it actually decreased 
during sharp wave ripple singlets [30]. This shows that 
the combination of electrophysiology and imaging 
can yield experimental readouts that are data rich and 
complementary.

The relative ease of recordings, the inexpensive nature 
of miniscope systems, and consequently their widespread 
use in many laboratories world-wide, is fueling the engi-
neering of new sensors with the required signal to noise 
ratios. Although miniscopes have been almost exclu-
sively used for imaging changes in calcium concentration 
in targeted cells, such as neurons and astrocytes, new 
molecular sensor developments (see below) promise to 
expand this repertoire.

Recent advances in imaging go well beyond miniscopes 
and include other major advances which employ larger 
microscopes and head-fixed animals. The two-photon 
mesoscope is a powerful tool that allows an unprec-
edented number of neurons to be imaged at once [31]. 
The key feature of this technique is the combination of 
cellular resolution and a cylindrical field of view spanning 
several cubic millimeters in which cells can be imaged 
simultaneously in behaving head-fixed animals. Impor-
tantly, with this technique it is possible to simultane-
ously image from multiple brain areas. For example, a 
mesoscope was used to simultaneously image the soma-
tosensory, parietal and retrosplenial cortices through a 
cranial window preparation. This technique is currently 
limited to imaging in head-fixed setups, which limits 
the array of behaviors that can be studied during imag-
ing. However, the ability to record nearly simultaneously 
from a large number of neurons in different brain areas 
is a very important advance, and holds great promise for 
systems neuroscience since it considerably facilitates the 
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longitudinal study of the interaction between multiple 
circuits in different brain areas, something that could not 
be easily accomplished with other techniques.

Holographic two-photon imaging can combine simul-
taneous imaging and selective optogenetic manipulation 
by taking advantage of multiple wavelengths. Impor-
tantly, this technique can specifically target voxels of the 
imaging field in a three-dimensional, volumetric manner 
to precisely manipulate and image individually identi-
fied neurons [32, 33]. The important implication for sys-
tems neuroscience is the possibility of targeting a subset 
of identified neurons with a specific activation profile 
within an imaged network, and determine the functional 
implications of these manipulations. For example, this 
approach was recently used to study how neurons are 
recruited into ensembles within the visual cortex, and 
how manipulation of these neurons within the ensemble 
affected the network as a whole, as well as performance 
in a behavioral task [25]. Surprisingly, the authors found 
that the manipulation of as little as 2 neurons could have 
a functional impact on network firing patterns and con-
sequently behavior output! It is important to note that 
these ground-breaking approaches will undoubtedly be 
applied to molecular systems neuroscience studies since 
they could potentially be used to track and manipu-
late specific molecular systems (see below) in targeted 
circuits with very fine spatial precision. Novel imaging 
systems have been and will continue to be a key tool to 
investigate systems level neuronal dynamics in vivo.

Molecular sensors and reporters
A recent revolution in molecular sensors and reporters 
has transformed the field of molecular imaging, and these 
powerful tools may very well be one of the foundation 
stones of molecular systems neuroscience. Fluorescence, 
autofluorescence and bioluminescence have been used 
with a plethora of different kinds of molecular reporters 
and sensors to explore molecular structure and function 
in an unprecedented manner. This revolution in molecu-
lar imaging is based on two complementary strategies: 
imaging of molecular structures and events by tagging 
them with photon emitting reporters, and the visualiza-
tion of molecular mechanisms (e.g. receptor activation) 
by taking advantage of fusions with specific molecular 
sensors.

To visualize specific molecules, reporters such as fluo-
rescent or bioluminescent proteins (e.g., Green Fluores-
cent Protein or GFP) are added so that they behave like 
“GPS devices” that track the movement of specific mol-
ecules in cells and circuits. Importantly, these tags are 
inert, and have a minimal impact on the endogenous 
properties of the targeted molecules, such as their activ-
ity, interaction with other molecules and movement in 

and out of cells. To precisely detect the subcellular dis-
tribution of a specific molecule by using just fluorescent 
tags like GFP, localization specific fluorescent tags have 
been developed. For example, the pH-sensitive GFP 
pHluorin can switch between a non-fluorescent state 
(quenched state) and a fluorescent state in response to 
changes in pH [34]. Fusing pHluorin to specific molecules 
makes it possible to track the movement of these mole-
cules across subcellular compartments. For example, by 
fusing pHluorin to the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR, one of the 
core transmitter receptors for synaptic transmission and 
plasticity) subunit GluA1 (thus generating SEP-GluA1) 
it was possible to generate a AMPAR that only becomes 
brightly fluorescent when this receptor moves to the 
relatively more alkaline environment of the postsynaptic 
membrane [35]. With this tool, it is now possible to easily 
track synaptic AMPAR trafficking after learning in  vivo 
[36]. Another remarkable example is Synapto-pHluorin, 
a fusion protein that includes the transmembrane syn-
aptic vesicle protein VAMP2 (Vesicle Associated Mem-
brane Protein 2) and a variant of pHluorin called ecliptic 
pHluorin [37, 38]. At pHs characteristic of the milieu 
inside transmitter vesicles, synapto-pHluorin is non-flu-
orescent. When vesicles are released, synapto-pHluorin 
is exposed to the neutral extracellular space and brightly 
fluoresces, thus marking neurotransmitter release events. 
A modified version of a pH sensitive fluorine was used 
to study synaptic vesicle resting pool release and cycling 
during development [38] and the role of SNARE (Soluble 
N-Ethylmaleimide-Sensitive Factor Attachment Protein 
Receptor) proteins in regulating the dynamics of vesicle 
pool partitioning [39].

Since most GFP tagged proteins are continuously 
expressed, temporal information about the reported 
molecular events can be uncertain. To enable labeling 
within a specific time window, photoactivatable fluores-
cent proteins (PA-FPs) were developed [40, 41]. These 
fluorescent proteins display unique changes in their spec-
tral properties upon exposure to a specific wavelength of 
light, thus providing a temporal landmark for the tracked 
proteins. Some PA-FPs can be activated from low fluo-
rescent states to high fluorescence states [42, 43] while 
some can change from one fluorescent color to another 
[44, 45]. Others can be switched on and off reversibly [46, 
47]. By applying the PA-FP kikGR (Kikume Green–Red), 
a unique imaging system was developed that combines 
 Ca2+ imaging and engram identification to track engram 
activity [48]. Fuelled by a need to visualize molecular 
mechanisms in conjunction with network properties or 
behavioral output, two general categories of approaches 
with distinct temporal properties have been developed: 
(1) Sensors developed for live imaging; (2) sensors which 



Page 5 of 19Shen et al. Molecular Brain            (2022) 15:7  

need time for labeling. These sensors have been designed 
to track many different types of molecular events, includ-
ing protein–protein interactions, receptor/enzyme acti-
vation, protein cleavage, gene transcription, etc. The 
design of these sensors has taken advantage of unique 
properties that define the targeted molecular events, 
including molecular conformational changes, dimeriza-
tion and aggregation.

To observe molecular events in real time, sensors need 
to become brighter or change to a different fluorescent 
state immediately after such events occur (e.g. within 
milliseconds to seconds). To view G protein-coupled 
receptor (GPCR) activity, for example, a circularly per-
muted green fluorescent protein (cpGFP) was inserted 
at specific locations between the transmembrane helix 5 
(TM5) and 6 (TM6) of the target GPCR (Fig. 1a); cpGFP 
is generated from GFP by genetically linking the origi-
nal N- and C-termini with a short polypeptide linker 
(typically at site 144). The fluorescence of GFP remains 
unchanged but becomes more sensitive to the phys-
icochemical environment [49–51]. The cp-GFP can be 
genetically inserted into a particular GPCR with the new 
N- and C-termini (TM5 and TM6) introduced close to 
the chromophore. Then, conformational changes driven 

by receptor activation cause alterations in the chromo-
phore environment and a corresponding change in the 
fluorescence intensity, thus transducing information 
about GPCR activation into a fluorescent signal [52]. 
With this strategy, genetically-encoded GPCR-activation 
based (GRAB) sensors were developed for tracking in 
real time the activity of GPCRs, such as dopamine recep-
tors [53], serotonin receptors and epinephrine receptors 
[54]. Based on a similar design, dLight1 was also devel-
oped to detect dopamine receptor activation [55].

Tools based on resonance energy transfer (RET) have 
often been used to visualize protein–protein interactions. 
RET is the principal mechanism for intermolecular or 
intramolecular redistribution of electron energy follow-
ing molecular excitation [56]. Briefly, when two proteins 
are physically close to one another (within 1–10  nm), 
one protein (donor) can undergo a nonradiative (dipole–
dipole) transfer of energy to the other protein (acceptor). 
In FRET (fluorescence resonance energy transfer), both 
proteins are fluorescent, whereas in bioluminescent reso-
nance energy transfer (BRET) the energy transfer is typi-
cally between a luciferase and a light-sensitive molecule 
(usually a fluorescent protein, Fig.  1b and c). When the 
two proteins are close enough, excitation of the donors, 
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Fig. 1 Different designs for real time sensors to detect molecular events. Here we use GPCR activation sensors as an example for cpGFP and 
protein–protein interaction sensors for the other sensors. a cpGFP: cpGFP is generated from GFP by genetically linking the original N- and C-termini 
with a short polypeptide linker, when the original protein is broken at specific positions (typically site 144). For GPCR sensor, cpGFP is inserted at 
specific locations between the transmembrane helix 5 (TM5) and 6 (TM6). Conformational changes by receptor activation cause alterations in 
the chromophore environment and change the fluorescence intensity. b FRET: A donor fluorophore (CFP) is fused to protein A and an acceptor 
fluorophore (YFP) is fused to protein B. Interaction between two proteins trigger energy transfer between CFP and YFP. Thus, violet excitation 
triggers yellow emission (YFP). c BRET: the donor fluorophore of the FRET technique is replaced by a luciferase, an enzyme which catalyzes 
luciferin oxidation to oxyluciferin, producing light emission and trigger YFP emission. d ddGFP: Weak or non-fluorescent ddGFP monomers (A and 
B) are separately fused to different proteins. Interaction between two proteins triggers the reversible association between monomers to form a 
fluorescent heterodimer
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either by light or by a substrate, will trigger emission 
events from the acceptor domains/proteins. Several sen-
sors have been made based on RET. For example, both 
BRET and FRET have been used to describe the molecu-
lar dynamics of Tyrosine receptor kinase activation such 
as TrkB, the Tropomyosin receptor kinase B [57, 58]. To 
precisely determine the interaction between neuronal 
activity patterns and transcription factor activity, a FRET 
based CREB (the cAMP-response element binding pro-
tein) sensor was used together with GCaMP6s in the vis-
ual cortex to study how experience shapes the interplay 
between CREB and neuronal activity in the neocortex of 
awake mice [59].

Despite the remarkable achievements made possible 
by FRET technology, FRET sensors have encountered 
several challenges in in  vivo imaging. These include the 
low sensitivity and efficiency of FRET sensors which limit 
in  vivo applications, the need for two different fluores-
cences for donor and acceptor for a single signaling event, 
thus limiting the number of events detected. By utilizing 

dimerization-dependent fluorescent proteins (ddFPs, 
Fig.  1d), multi-colored and intensiometric biosensors 
were developed to visualize the activity of multiple small 
GTPases [60]. Using two-photon imaging coupled with 
blue light-based optogenetic modules to activate FGFR1 
and TrkB signaling (OptoFGFR1 and OptoTrkB, respec-
tively, see below), these studies showed that red fluores-
cent sensors can be used to visualize local and reversible 
changes in the activity of small GTPases both in cultured 
neurons and in the mouse brain.

In addition to fast changes in photon emissions, some 
tools, such as the Tango system (Fig. 2a), track molecular 
events (e.g., GPCR activation) by initiating the expres-
sion of a reporter gene [61]. In the Tango system, a tet-
racycline-controlled transactivator (tTA) is coupled to 
the target GPCR and cleaved following ligand binding 
by recruitment of a TEV protease (Tobacco Etch Virus 
nuclear-inclusion-a-endopeptidase) fused to β-arrestin. 
The TEV-tTA is then transported to the nucleus where 
it triggers the transcription of a reporter gene (e.g., GFP) 
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a transcription factor (TF) are fused to the c-terminal of a GPCR. Upon activation, β-Arrestin tagged with TEVp will bind intracellular loop of GPCR 
and cleave TCS when exposed to release TF. b iTango system: TF is coupled to the C-terminal of a GPCR via TCS, which is caged by AsLOV2/Jα. Upon 
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under the regulation of a TRE (tetracycline responsive 
element) promoter. A light sensitive AsLOV2 domain 
(LOV2 domain of Avena Sativa phototropin 1) that pro-
tects the TEV cleavage site (TCS), confers temporal con-
trol of Tango signaling through photomodulation [58] 
(Fig. 2b). The iTango systems has been used to track the 
activation of the dopamine and the oxytocin receptors 
in vivo [62, 63].

In a similar system, Chacha [60], the effector (e.g., tTA) 
is fused to the C-terminus of the β-Arrestin (with a TEV 
site), and the TEV protease is bound to the C-terminus 
of the GPCR. Activation of the GPCR leads to the pro-
teolytic cleavage of the tTA effector bound to β-Arrestin, 
which is then free to activate the transcription of the 
reporter (e.g., GFP, Fig. 2c).

SPARK (Specific Protein Association tool giving tran-
scriptional Readout with rapid Kinetics, Fig. 2d and e) is 
a related system in which proteolytic release of a mem-
brane-tethered transcription factor requires both a pro-
tein–protein interaction to deliver a protease proximal to 
its cleavage peptide, and blue light to uncage the cleav-
age site. SPARK has been used to detect a wide range 
of different protein–protein interactions. SPARK2 [64] 
incorporates a luciferase moiety to modulate the light-
sensitive LOV (Light-Oxygen Voltage) domain. Thus, 
SPARK2 can be temporally controlled by either light or 
by addition of luciferin (activates luciferase), thus causing 
luciferase to change the configuration of LOV, via prox-
imity-dependent BRET, and promote proteolytic release 
of the transcription factor. This system reportedly shows 
lower-background noise and improved specificity com-
pared to the systems described above.

The sensors and reporters described above could be 
used to study the orchestration of specific molecular 
events in cellular systems, such as neurocircuits. At the 
systems level, some of these sensors have already been 
used at scales that allow monitoring of entire brain 
regions in vivo when combined with endoscopic imaging 
techniques, or at lower resolution through fiber photom-
etry. Among others, neuromodulatory activity has been 
studied at a region-wide scale [53–55], or brain glucose 
levels have been imaged in awake behaving animals [65].

Insights into these molecular systems events could be 
key in discerning how these systems modulate behavior. 
Since these methods use engineered genetic sensors to 
detect molecular events of interest, any discovery made 
with any one of these approaches would have to be con-
firmed with other discrete but complementary methods 
that for example look at undisturbed systems, such as 
immunostaining, in  situ hybridization, etc. This would 
help to confirm that the findings obtained are not the 
result of the genetic engineering systems used, and actu-
ally reflect the biology of the phenomena being studied 

(e.g., attention, learning, memory, etc.). Importantly, 
there are a number of novel molecular approaches that 
can be used to manipulate specific molecular mecha-
nisms in specific cells and systems, and at specific times. 
These approaches are especially important in testing 
hypotheses derived from the reporters and sensors just 
described (and vice-versa). As always, the combination 
of diverse manipulation, observation and modeling tools 
is critical to confirm and understand any new biological 
finding.

Optogenetic manipulation of molecular systems
Historically, molecular manipulation tools have 
their roots in pharmacology (e.g., drugs) and genetic 
approaches (e.g., transgenics, knock outs, viral manipu-
lations). Over time these approaches have become more 
and more specific, and therefore more easily applicable 
to systems neuroscience questions. For example, region 
specific drug infusions through cannulae and osmotic 
pumps allowed targeting of drugs to specific brains areas, 
while conditional knock outs, the use of cell-specific pro-
moters and viral vectors dramatically enhanced the spa-
tial and temporal specificity of genetic approaches. More 
recently, light-mediated modulation of specific molecu-
lar systems has revolutionized our ability to manipulate 
molecular pathways in specific cells of targeted circuits 
and at times of our choosing. These developments have 
had a key role in bringing molecular approaches to sys-
tems neuroscience. Optical manipulation tools, for 
example, have been developed to target almost every step 
of cellular signaling events, from ligand binding, recep-
tor activation, associated molecular signaling, all the way 
to downstream gene expression, and protein translation. 
Importantly, these molecular manipulations tools are 
perfect complements to the molecular reporting tools 
described above. Convergent findings with manipulation 
and reporting tools are key for discoveries in molecular 
systems neuroscience. Below, we will review some of the 
key approaches in the fast-evolving field of molecular 
manipulations tools which we propose will have an incal-
culable impact in systems neuroscience.

Targeting receptor activity with light
Receptor activation is the first step of many molecu-
lar signaling pathways. Receptors play essential roles in 
translating extracellular signals into intracellular sign-
aling events, and therefore they provide a key site to 
manipulate cell systems. Natural ligands, as well as ago-
nists and antagonists, have been traditionally used to 
specifically modulate receptor activity and study related 
mechanisms. Unfortunately, these classic pharmacologi-
cal tools cannot be selectively targeted to specific cells in 
a circuit, and their temporal resolution is limited by the 



Page 8 of 19Shen et al. Molecular Brain            (2022) 15:7 

time required for drug diffusion and degradation, making 
them difficult or impossible to use in system neurosci-
ence studies. Below, we will review ground-breaking new 
molecular tools that circumvent these limitations, and 
therefore bring molecular manipulations to the purview 
of systems neuroscience.

Optical modulation combined with sophisticated 
genetic approaches have made it possible to regulate 
receptor function in specific cells of targeted systems 
and in defined brain regions. Receptors for neurotrans-
mitters, such as glutamate, GABA (Gamma-aminobu-
tyric acid), dopamine, serotonin and noradrenaline have 
played a central role in neuroscience. Thus, the novel 
optical tools modulating the activation of these receptors 
provide ground-breaking opportunities to explore hidden 
properties of related systems with spatially and tempo-
rally precise receptor manipulations.

Targeting ligands
Since most receptors need their ligands for activation, 
temporal and spatial regulation of ligands has been a 
key strategy to regulate receptors. Optopharmacological 
approaches include a number of photosensitive reagents 
that act on a wide range of molecules, including channels 
and receptors [66].

Caged ligands, whose release is controlled by light, 
were a key developing milestone in the field. Caged mol-
ecules have photolabile protective moieties that cage the 
molecule in question, and keep it from interacting with 
its partners (e.g., a receptor). Light activation removes 
the molecular cage, enabling the uncaged ligand to bind 
to its receptor. When caged, the compound/ligand stays 
inert until illuminated by the activating light wave-
length. Uncaging following illumination, can trigger a 
rapid increase in the concentration of a specific ligand, 
therefore resulting in the prompt activation of a given 
receptor. Since uncaging is controlled by light, it can be 
restricted to specific sites and cells of targeted circuits. 
Furthermore, with two-photon light sources, uncaging 
can be directed to very specific sub-cellular sites, such 
as dendritic spines, thus significantly enhancing the spa-
tial and temporal specificity of molecular manipulations 
[67]. Currently, there are caged ligands for most neuro-
transmitters, including glutamate [68, 69], GABA [70], 
dopamine [71] and serotonin [72], to name a few. Fur-
thermore, caged agonists and antagonists of neuropep-
tide receptors are also available [73–75], thus allowing for 
light control of key neurotransmission and neuromodula-
tion events in neurocircuits.

Photoswitchable ligands are another key class of light 
controlled ligands. These ligands allow for bidirectional 
regulation (activation/deactivation) with precise time 
control. Unlike caged compounds, photoswitchable 

ligands can reversibly alternate between an active and an 
inactive state in response to two different wavelengths of 
light [67], and have been designed for a large variety of 
neurotransmitter receptors and ion channels, including 
metabotropic glutamate receptors [76–78], ionotropic 
glutamate receptors [79, 80], GABA receptors [81, 82], 
 K+ channels [83, 84] and  Ca2+ channels [85].

Uncaging as well as photoactivated ligands have been 
widely used for more than a decade to study synap-
tic transmission, compartmentalization of vesicles and 
receptors at the synapse, as well as synaptic plasticity 
[86]. It is also worth mentioning that photopharmacology 
has, for example, been used to restore light-sensitivity in 
amacrine and retinal ganglion cells, as well as to develop 
alternative approaches to vision restoration [80, 87]. 
These studies include in vivo monitoring of local changes 
in synaptic morphology and synaptic pruning which can 
then be used to infer mechanisms underlying the activity 
and connectivity of the network at a systems level [68, 69, 
88, 89].

To avoid off-target effects, it is critical that caged and 
photoswitchable ligands are inert before activation, since 
high concentrations are always needed to ensure suffi-
cient levels of these ligands around the targeted recep-
tors. To address this challenge, photoswitchable ligands 
have been covalently tethered to receptor binding pock-
ets, which result in very high concentrations near the 
sites of intended action (i.e., near receptors), but com-
paratively lower concentrations elsewhere [67]. Photo-
switchable tethered ligands have been developed for a 
variety of receptors, including the ionotropic glutamate 
receptor, iGluR [90, 91], the metabotropic glutamate 
receptor, mGluR [92, 93], GABAa receptor [94, 95], the 
nicotinic acetylcholine receptor, nAChR [96] and Dopa-
mine receptor [97].

Reengineering receptors
Efforts to control the function of receptors in real time 
have also taken advantage of hybrid receptors that incor-
porate, for example, the extracellular domains of opsins 
(so that the receptors become light activated) and that 
preserve the effector intracellular domains of the recep-
tor. For example, since GPCRs share conserved struc-
ture, the extracellular loops of several GPCRs have been 
replaced with those of rhodopsin so that, upon light stim-
ulation, the structure of the transmembrane domains of 
rhodopsin changes, thus activating downstream G pro-
tein complexes normally associated with the targeted 
GPCR [98]. This approach is termed Opto-XR [98, 99].
Based on this design, a number of optoXRs have been 
engineered, allowing for optogenetic control of adrener-
gic receptors [100], adenosine receptors [101], mGluRs 
[102], dopamine receptors [103], and serotonin receptors 
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[104]. Although Opto-XR engineering has so far been 
restricted to GPCRs, this approach could potentially be 
applied to other receptors.

Ion Channels and other proteins can also be regulated 
by linking them to a class of proteins that changes con-
formation in response to light (Fig. 3). These photoacti-
vatable proteins include LOV, Cryptochrome (CRYs), 
Blue-light-using flavin adenine dinucleotide (BLUF), 
Phytochrome (Phy), and UV-B (Ultraviolet-B radiation) 
photoreceptor UVR8 (UV Resistance Locus 8). The con-
formational changes induced by blue light in LOV2, for 
example, were used to switch a  K+-channel (BLINK1, 
blue-light-induced  K+ channel 1) between an open or 
closed state [105]. LOV 2 and CRY2 were also used to 
control dimerization/or oligomerization, and therefore 
the activation, of receptor tyrosine kinases (optoFGFR1, 
light activated fibroblast growth factor receptor 1; [106–
108]). Similarly, a photoactivable domain, inspired by 
Arabidopsis thaliana cryptochrome 2, was engineered to 
allow blue-light activation of Trk signaling in a cell-spe-
cific and spatially directed manner [109, 110]. OptoTrkB 
was also used to activate receptor signaling in the mouse 
brain [111]. An Optogenetically activatable Fas receptor 
(optoFAS) was developed using the blue light-induced 

homo-oligomerizing property of cryptochrome 2 
(CRY2). Activation of this receptor in immature neurons 
of the dentate gyrus revealed a role for Fas signaling in 
the elevation of mTOR and ERK levels in these neurons 
as well as the subsequent induction of adult hippocampal 
neurogenesis [112].

CLICR (Clustering Indirectly using Cryptochrome 2), 
which again uses engineered Arabidopsis cryptochrome 
2, is a modular approach designed to allow optic control 
of the clustering of a range of transmembrane receptors 
[113]. This is important because clustering has a key role 
in the activation of many receptors. CLICR was used to 
allow optical control of integrins, platelet-derived growth 
factor and fibroblast growth factor receptor [113].

Although many of the methods mentioned in this 
section have already been used in neuroscience experi-
ments, they all have specific individual disadvantages 
that somewhat limit their application. For example, caged 
ligands, as well as photoswitchable ligands, require that 
the ligand be exogenously supplied. Unless the ligand can 
be expressed by cDNA viral vectors at the desired lev-
els, the high dosages required for these experiments can 
sometimes result in off-target effects [66] which compli-
cate in vivo applications. In this respect, it is important to 
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note that tethered photoswitchable ligands successfully 
avoid this problem by dramatically reducing the proba-
bility of off-target effects. Thus, tethered photoswitchable 
ligands hold great promise for in vivo studies, including 
molecular system neuroscience experiments.

Similarly, although the OptoXR approach can be 
widely used to tightly manipulate GPCR function, their 
highly conserved structures and signaling mechanisms 
do not always represent the diversity of extracellular and 
transmembrane domains seen in endogenous GPCRs. 
For example, some GPCRs form homodimers or heter-
odimers, and this can significantly change their down-
stream signaling, thereby affecting the precision and 
usefulness of the OptoXR approach [114–116]. Simi-
larly, interactions with other receptors (e.g. Receptor 
Tyrosine Kinases) are also critical components of GPCR 
signaling, and this is not captured by the OptoXR sys-
tem [116, 117]. As a result, this approach only mimics 
one aspect of GPCR activation (i.e., G protein signal-
ing), leaving out other critical aspects of the activation of 
these receptors. Furthermore, all approaches that require 
the cellular expression of specific molecules always face 
the possibility that the overexpressed molecule uninten-
tionally interferes with one or more functions of the tar-
geted molecule. For example, GPCRs have constitutive 
(also known as intrinsic or basal) levels of activity in the 
absence of their ligands. Consequently, their overexpres-
sion may abnormally amplify downstream signaling and 
thus affect OptoXR-base manipulations. OptoXR tech-
nology has been used to study the activity of several brain 
regions and systems. For example, OptoXR has been 
used with a modified type 1 dopamine receptor in the 
nucleus accumbens (NAc) to test its role in social behav-
ior [103]; It has also been used for a photoswitchable 
GPCR based opsin to inhibit neurotransmitter release at 
NAc axon terminals and suppress reward-seeking behav-
ior [118]. OptoXRs are also a convenient tool to study the 
interactions between a brain region and a neuromodula-
tory input, as they allow for the silencing of the neuro-
modulatory input and simultaneous re-establishment of 
the neuromodulatory downstream pathway specifically 
in the targeted region through optogenetic activation of 
the OptoXR.

Targeting intracellular mechanisms
In addition to receptor function, there are several sign-
aling molecular mechanisms that can be manipulated 
for the study of cells and systems. These include protein 
interaction, phosphorylation, cleavage, aggregation/dis-
aggregation, allosteric changes, etc. A number of differ-
ent optogenetic tools have been designed to manipulate 
specific aspects of these signaling mechanisms. Next, we 

will review some examples that illustrate the enormous 
creative potential of these approaches.

Optogenetic control of molecular localization 
and association
Protein–protein interactions (PPI) are critical for intra-
cellular signaling. These interactions are required to form 
complexes that perform particular functions (e.g., Cdk5, 
Cyclin Dependent Kinase 5 and P35/P25 complex [119]). 
For example, certain enzymes (e.g. kinases) and down-
stream effectors (e.g. rapidly accelerated fibrosarcoma 
kinase or RAF and Erk) are recruited for signal amplifi-
cation [109]; while other complexes target proteins to 
subcellular regions (e.g. A-kinase activity reporter, AKAR 
targets Protein kinase A) thus spatially restricting intra-
cellular signaling [110]. Accordingly, tools for optoge-
netic induction of molecular dimerization, aggregation or 
disaggregation could be used to modulate as well as mod-
ify protein interactions and consequently the properties 
of cells and systems.

To control protein–protein interactions optoge-
netically, several Light-Inducible Dimerization (LIDs) 
systems have been developed that take advantage of 
light-sensitive domains including LOV2, Cryptochrome 
2 (CRY2)- Cryptochrome-interacting basic-helix-loop-
helix (CIB1), Phytochrome (Phy)- Phytochrome-interact-
ing factor (PIF) and Deinococcus radiodurans bacterial 
phytochrome (DrBphP, Fig. 3, Table 1) [120–128]. These 
light sensitive domains change conformation after light 
activation, and in the right molecular configuration, 
this property can be used to modulate specific protein–
protein interactions. For example, a Light-Inducible 
Dimerization system based on cryptochrome (CRY2)–
cryptochrome-interacting basic-helix-loop-helix (CIB1) 
was developed to optogenetically control the activation 
of Raf/Erk and PIP3 (Phosphatidylinositol (3,4,5)-tris-
phosphate) signaling [129, 130]. LARIAT (light-activated 
reversible inhibition by assembled trap) and IM-LARIAT 
(light-activated reversible inhibition by assembled trap 
of intracellular membranes) are sophisticated systems 
that take advantage of CRY2- CIB1 interactions. In this 
case, light activation triggers fast and reversible protein–
protein aggregation. This system has been engineered to 
control a number of signaling systems, including Rab-
mediated intracellular membrane trafficking, a phenom-
enon involved in critical cellular processes [131, 132]. 
Ras/ERK and Rho GTPase signaling can also be optoge-
netically modulated by Light-inducible dimerization of 
Phytochrome B (PhyB) and phytochrome-interacting 
factor 6 (PIF6) domains [133]. Tunable Light-Inducible 
dimerization tags (TULIPs) and LOV2 Trap and Release 
of Protein (LOVTRAP) have also been developed to 
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optogenetically control protein translocation using the 
LOV2 system [134].

Some of these tools were already applied to neu-
roscience research. Studies using CRY2-CIB1 based 
OptoRAF1 in neuronal progenitor cells showed that 
optogenetic RAF activation promotes astrocytogen-
esis in mouse neural progenitors [135]. Light-inducible 
dimerization was used, among other things, to study 
the trafficking mechanisms of GPCRs and their regula-
tory proteins, and in particular β-arrestin mediated traf-
ficking [136, 137]. In another example, IM-LARIAT was 
used to reversibly disrupt membrane aggregation of Rab-
GTPases to study differences in the trafficking properties 
mediated by different Rab-GTPases in several cell types, 
including hippocampal neurons [131]. There are count-
less systems level experiments that could be carried out 
with these approaches. For example, it would be interest-
ing to combine two-photon all optical approaches with 
light-inducible PPI to image the changes of neuronal net-
works within a region during disruption of physiological 
localization and trafficking of key synaptic proteins. Such 
an experiment could highlight the impact of synaptic 
protein trafficking to the patterns of acitivity of a specific 
neuronal assembly during learning.

Optogenetic control of endogenous  Ca2+ channels in vivo
Intracellular  Ca2+ signaling in neuronal cells plays a 
fundamental role in translating diverse extracellular 

inputs into complex brain functions, such as learning, 
memory formation and emotion. Previously, the Heo 
group developed a blue-light–responsive  Ca2+ chan-
nel modulator, OptoSTIM1, that triggers the open-
ing of  Ca2+-release–activated  Ca2+ (CRAC) channels, 
and successfully demonstrated for the first time that 
inducing  Ca2+-selective signaling in excitatory neurons 
of the hippocampal CA1 region is capable of enhanc-
ing contextual fear memory in mice [138]. They also 
recently developed the next generation of optogenetic 
 Ca2+ modulators, termed monSTIM1 (monster Opto-
STIM1), that show ultra-sensitivity to blue light [139]. 
Using structural predictions of the dimeric interface of 
cryptochrome 2 (CRY2), they identified a single point 
mutant  (CRY2E281A) that exhibits stable basal intracel-
lular  Ca2+ concentrations (regardless of protein expres-
sion levels) and drastically enhanced photosensitivity 
when coupled with a superior CRY2 clustering system 
(CRY2clust). With MonSTIM1 it was possible to induce 
 Ca2+ signaling in excitatory neurons or astrocytes in 
the cortex, hippocampus and thalamus of awake mice 
with non-invasive light simulation. When applied to 
the anterior cingulate cortex (ACC) of the mouse brain, 
monSTIM1 effectively enhanced short-term (4  min) 
and long-term (24 h) memory for observational fear in 
mice. This experiment directly demonstrated how the 
fine tuning of  Ca2+ signaling in a single brain region 
can effectively affect memory encoding.

Table 1 Summary of commonly used light inducible systems

Here, we listed several commonly used light inducible system as well as examples of how these systems were used in the regulation of molecular events

Light-
inducible 
systems

Description Applications

CRY2-CIB CRY2 undergoes blue light–dependent interaction with CIB1, 
which mediates light responses in plants [123]

1) Optogenetic control of PIP3 [130]
2) Light-induced activation of the Raf/MEK/ERK [129]
3) LARIAT [132] and IM-LARIAT [131]
4) Opto-TrK [60, 109]

CRY2-CRY2 CRY2 undergoes homo-oligomerization upon blue light stimula-
tion [183]

1) OptoFGFR1 [107]
2) OptoFAS [112]
3) CLICR [113]

Phy-PIF Exposure to 650 nm induces association of PIF and Phy, while 
exposure to 750 nm light induces dissociation of PIF from Phy 
[184]

1) Opto-SOS [133, 185]
2) Spatiotemporal control of the Rho GTPase signaling [150]

LOV2 Interaction between Light-sensitive LOV2 domain of a Jα helix can 
be reversibly disrupted by blue light [124]

1) BLINK1 [105]
2) LOVTRAP [134]
3) TULIPs [186]
4) Light induced nuclear translocation [154–158]

LOV2-LOV2 LOV2 undergoes homo-dimerization upon blue light stimulation 
[187]

1) EL222 [126, 188]
2) OptoFGFR1 [108]

DrBphP DrBphP is from Deinococcus radiodurans bacterial phytochrome, 
the dimeric photoreceptor proteins that sense red light levels. 
Under NIR (740–780 nm) light, DrBphP can form homodimers. 
After Absorption of FR (640–680 nm) light, DrBphP dimers come 
apart [125]

1) Opto-RTK [127, 128]
2) Light-Activated Cyclic-Mononucleotide Phosphodiesterases [189]
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Light modulation of enzyme activity
In addition to controlling dimerization/aggregation, 
optogenetic strategies have also been focused on con-
trolling enzyme activity by inducing light-triggered 
changes in protein conformation that result in activity 
changes in targeted proteins. For example, light induced 
structural changes in AsLOV2 were used to change the 
activity of Ras-related C3 botulinum toxin substrate 1, 
Rac1 (PA-Rac1), a small signaling GTPase involved in a 
diverse array of cellular functions. Briefly, the complete 
LOV2-Jα sequence was fused to the amino terminus of 
a constitutively active Rac1. Before light activation, the 
LOV domain tightly binds the Jα helix domain, and this 
prevents Rac1 effectors from binding to Rac1. Light stim-
ulation unwinds the Jα helix, which releases steric inhibi-
tion of Rac1, allowing this protein to bind to its effectors 
[131]. Amongst other things, this tool could be used for 
rescue experiments to determine the molecular pathways 
through which one circuit maight affect plasticity in a 
downstream circuit.

Optogenetic control of gene transcription and translation
Other than controlling intracellular signaling, opto-tools 
have also been engineered to modulate gene expres-
sion. Some of these tools take advantage of transcrip-
tion systems such as Cre/Flippase (Flp) recombinase 
or tetracycline system, that have been used to con-
trol the expression of target genes under the control of 
the artificial promoters of these systems, while others 
were designed to directly bind targeted promoters and 
thus modulate the expression of the associated genes. 
Site specific recombinase systems, such as Cre/locus of 
X-over P1 (Loxp), Flp/Flippase recognition target (FRT), 
are widely used for cell-type specific gene modulation 
by expressing these systems in transgenic mice or by 
delivering them with viral vectors [140]. Although these 
approaches are widely used, and some versions are even 
pharmacologically inducible by agents such as tamoxifen 
or 4-hydroxytamoxifen, they lack the temporal precision 
[141] required for some system neuroscience purposes. 
To improve on temporal precision, photoinducible Cre, 
Flp (PA-FLP) [142–145] and tet systems were developed 
[146, 147], that allow for tight regulation by light. Beyond 
temporal control, these systems also remediate problems 
with diffusion, and off-target effects due to the adminis-
tration of a pharmacological inducer. Importantly, dam-
age caused by optical cannula implantation can also be 
avoided by using approaches such as near infrared deep 
brain stimulation and ultrasensitive opsins [142, 148, 
149].

Nuclease-dead Cas molecules (dCas9 and dCas12a), 
that still bind DNA guided by single guide RNA (sgRNA), 
have been fused to light induced dimerizers (e.g., 

CRY2-CIB1, PhyB / PIF and Magnet pMag-nMag), such 
that light stimulation triggers the expression of targeted 
genes. RNA based targeting makes this system exquisitely 
specific. Similar strategies, in which light induced dimer-
izers were fused to specific transcription factors, have 
also been used to optogenetically control the transcrip-
tion of target genes [150–153]. Since transcription regu-
lates a plethora of cell and circuit states, such as memory 
stabilization, these optogenetic tools could be used to 
study a number of system properties.

Another strategy to optogenetically control gene tran-
scription takes advantage of cellular mechanisms that 
guide transcription factors to the cell nucleus where 
they modulate gene expression. Briefly, these mecha-
nisms involve small protein segments that function as 
cell nuclear export signals (NES) and nuclear localiza-
tion signals (NLS) to control the cellular localization of 
specific transcription factors [154]. For example, light 
induced conformation changes, mediated by using LOV 
and CRY2, expose NLSs and hide NESs so that the engi-
neered transcription factor can enter the cell nucleus and 
initiate gene expression [134, 155–158].

Subcellular localization of RNA also plays a key role in 
the function of neurons, such as the targeting and local 
translation of RNA at synapses. A CRISPR(clustered 
regularly interspaced short palindromic repeats)/Cas9 
derived system (RNA-targeting Cas9 or RCas9) has also 
been used not only to visualize the trafficking of specific 
mRNAs in cells (with EGFP fusions), but also to optoge-
netically modulate the trafficking of specific RNAs by 
trapping (or releasing) these mRNAs in molecular clus-
ters within the cell [159]. Functionally, this optogeneti-
cally regulated sequestering approach reduces the ability 
of target mRNAs to get access to the cell’s translation 
machinery (i.e., ribosomes), thus markedly attenuating 
the synthesis of specific proteins [159]. Remarkably, this 
mRNA sequestering strategy can be targeted to differ-
ent cellular compartments so that, for example, synaptic 
translation of a specific gene is disrupted, but its somatic 
translation is not. Optogenetic control of gene transcrip-
tion has been used to study signaling pathways associ-
ated with calcium stress, by artificially manipulating the 
levels of nuclear translocation of the transcription factor 
Calcineurin-responsive zinc finger 1 (Crz1). The tempo-
ral resolution of this optogenetic technique was key in 
these studies [160]. This powerful new tool promises to 
be very useful in molecular systems neuroscience studies. 
Not only does it allow for the precise temporal control of 
protein translation through tightly regulated optogenetic 
release of RNA, it also affords exquisite spatial control 
since it can be used to specifically target mRNA seques-
tering in different subcellur comparments. For example, 
this tool could be used to examine the role of somatic 
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versus synaptic translation of proteins at specific times 
during learning or memory consolidation, and in differ-
ent cellular structures and cell types in the brain.

Modulation of protein function by optogenetically 
activated nanobodies
The ability of monoclonal antibodies to very specifically 
target their antigens has been widely used in research 
and in medical treatments (e.g. cancer therapy). How-
ever, their large size (150 kDa), and non-covalently asso-
ciated variable domains, make it essentially impractical 
to express such large proteins with cDNA constructs, 
limiting their usefulness for many applications, includ-
ing systems neuroscience. In contrast, nanobodies (natu-
ral single domain antibodies), proteins ten times smaller 
(~ 15  kDa) than an antibody, have comparable affini-
ties for their antigens but are highly soluble, stable, and 
have excellent tissue penetration, thus making them use-
ful as modulation tools for protein function [161, 162]. 
Importantly, the light activated properties of AsLOV2 
were combined with nanobodies (opto-nanobodies), 
such that light stimulation triggers a conformational 
change that alters the opto-nanobody’s antigen bind-
ing (either increases or decreases), thus allowing control 
over the function of the targeted protein [163]. Addition-
ally, magnet optical dimerization tools (nMagHigh1 and 
pMagHigh1) were used to engineer a light activated nan-
obody system (optobodies) that can be expressed in tar-
get cells as intracellular antibodies (intrabodies), which 
can bind and inhibit their targets after light stimulation 
(e.g. β2 adrenergic receptor optobodies) [164]. Further-
more, a chemogenetic control of nanobodies was also 
developed (ligand-modulated antibody fragments or 
LAMAs and chemobodies based on rapamycin-induced 
FRB-FKBP dimerization of split nanobody fragments) 
[164, 165].

Molecular inactivation with light triggered free radicals
Reactive oxygen species (ROS) can be used to inactivate 
DNA, RNA, lipids and proteins. With Chromophore-
Assisted Laser or light Inactivation (CALI), it is possible 
to optogenetically produce ROS and inactivate a number 
of intracellular molecules in cell sites targeted by light. 
Because the free radical species generated during CALI 
are short-lived (less than 1 s), and light can be limited to 
small subcellular regions, this approach is an important 
spatially and temporally controlled loss-of-function tool 
[166, 167]. Although CALI initially used dyes for free rad-
ical production, fluorescent proteins such as EGFP [168], 
and more recently KillerRed, have been combined with 
CALI to specifically optogenetically inactivate proteins 
fused to either of these two photosensitizers [169, 170]. 
These approaches can then be used to test the effects of 

transient inactivation of a single protein at the systems 
and behavioral level. For example, CALI was used in the 
hippocampus to transiently inactivate actin polymeriza-
tion, disrupt LTP and impair context-specific memory. 
Subsequently, miniscope imaging and CALI based inac-
tivation techniques were combined to show distinct roles 
of hippocampal online and offline LTP in engram forma-
tion [171].

What is next?
The development of opto tools has been centered on two 
key aspects: (1) better spatial and temporal specify and 
(2) novel combinations of molecular systems, which con-
tinue to open novel modulation opportunities.

Although optogenetics enable the modification of 
neuronal activity with high spatial and temporal resolu-
tion, there are limitations that need to be addressed. For 
example, light delivery often involves the implantation 
of optic fibers, and this inevitably results in some dam-
age to the targeted tissue, especially when deep brain 
regions are studied (e.g. hypothalamus), or when multi-
ple-areas need to be modulated. Deep tissue penetration 
by light is another challenge that needs to be addressed. 
Opsins with red-shifted spectra have been developed 
to allow possible light delivery through the skull and to 
deeper brain areas [33, 172]. Another solution is to com-
bine traditional opsins with upconversion nanoparti-
cles (UCNPs). These nanoparticles can be transcranially 
stimulated by near-infrared light and, as a result, they 
emit light in the visible spectrum required to excite most 
opsins [149]. However, high power light sources still need 
to be used to ensure sufficient activation of the opsins 
involved. This can result in unwanted increases in the 
temperature of local tissues, and consequently inflam-
mation and even cell death. Strong illumination can alter 
the function of specific neurons independently of opsin 
expression, making the further development of lucif-
erase-based bioluminescence systems a very promising 
alternative.

Bioluminescence involves the emission of light as a 
result of a cellular biochemical reaction. In contrast to 
fluorescence and phosphorescence, bioluminescence 
reactions do not require exogenous light activation. 
Instead, in bioluminescent systems the excitation light 
is produced through the oxygenation of a substrate, 
generically called luciferin, and the activity of the enzyme 
luciferase [173–175]: a luciferin injection, together with 
appropriately expressed luciferase, can trigger the light 
emission required for opsin activation. Since in this case 
the light source (i.e. the luciferin/luciferase combination) 
is designed to be extremely close to the opsin, very low 
power is needed to trigger optogenetic activation, thus 
avoiding damage associated with heating that can take 
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place in traditional optogenetic systems. For example, 
luciferase has been fused to channelrhodopsin to excite 
neurons (luminescent opsin, LMO) or to a proton pump 
to inhibit these cells (inhibitory LMO, iLMO) [176]. 
Unlike traditional chemogenetic approaches, where 
drugs such as CNO/clozapine are known to have signifi-
cant side effects, luciferin seems to be relatively inert in 
cells [177, 178].

Although bioluminescent approaches suffer from 
inferior temporal resolution (compared with classical 
optogenetic methods), the spatial resolution of these sys-
tems can be superior because illumination comes from 
light sources with cellular and even molecular resolu-
tion. Luciferase can be expressed in any target cellular/
subcellular region, and only the nearby opsins receive 
enough photons to be activated. Therefore, biolumines-
cent derived systems allow the investigation of questions 
that require optogenetic modulation at higher spatial res-
olutions. For example, luciferase has been combined with 
the SPARK2 system, which can label beta2 adrenergic 
receptor activation, so that only cells closely interacting 
with the luciferase expressing cells are activated [64].

Another limitation of current optogenetic systems is 
that the enhancement and inhibition of molecular/cel-
lular activity is done arbitrarily at a time chosen by the 
experimenter, and not as a result of some molecular, 
cellular or circuit event intrinsic to the systems being 
studied. To circumvent this limitation, molecular sen-
sors have been combined with optogenetic modulators 
so that specific biological phenomena perceived by the 
sensor triggers when optogenetic activation takes place. 
For example, naturally occurring neural dynamics dur-
ing behavior can provide the trigger for subsequent pre-
cisely timed optogenetic manipulation to mimic or block 
endogenous activity. GCaMP6 based fibre photometry 
was used to identify differences in NAc D2 dopamine 
receptor-expressing neuronal activity during the decision 
process. Optogenetic stimulation was applied only dur-
ing the decision period to mimic endogenous dynamics 
of single-trial control of risk-seeking behavior [179, 180].

As an extension of this idea, the promoter of the activ-
ity dependent immediate early gene c-Fos has been engi-
neered to control the transcription of a light controlled 
tTA (opto-tTA) so that the transcription of specific genes 
is both activity and light-dependent. Importantly, unlike 
conventional tTAs [181], the regulation of opto-tTA does 
not involve doxycycline. Briefly, neuronal activity turns 
on the cFos promoter, which in turn will guide the ini-
tiation of the expression of opto-tTA. After optogenetic 
activation, opto-tTA will bind and activate TRE, and ini-
tiate the expression of downstream genes [146].

Another exciting new tool involves a GPCR-coupled 
CRISPR-Cas system. This system can sense the activation 

of GPCRs, through the TANGO or Chacha systems 
described above. Then, this results in the uncaging of 
dCas9, which goes on to modulate gene expression [182]. 
In the future, it will be exciting to include optogenetic 
activation in this approach, by using for example, iTango 
or light controlled dCas9. This would allow for an experi-
menter defined time window when GPCR activation 
uncages dCas9 and modulates gene expression.

Molecules, systems and behavior
The incredible success of systems neuroscience is in no 
small part shaped by the foundational methods of the 
field, including electrophysiology and modeling. It is 
absolutely remarkable how far the field has come despite 
the fact that the majority of studies were focused on one 
group of phenomena (neuronal firing dynamics) of a sin-
gle class of cells in the brain (neurons), and they were car-
ried out with different variants of a single experimental 
approach (electrophysiology). This success is all the more 
remarkable since we now have overwhelming evidence 
that the complexity of behavior derives from nearly every 
cell type in the brain, and can be traced back to a wide 
range of biological mechanisms that go well beyond neu-
ronal firing dynamics. Nevertheless, the majority of ideas 
and models in systems neuroscience to this day remain 
firmly entrenched in the illustrious history of the field, 
in no small part due to the enormous creativity and gen-
erative potential of the ideas that serve as its foundational 
stones. Despite this, it is now time to look into the future 
of systems neuroscience, a future that will be firmly 
grounded within its enormously successful past with-
out being restricted by it. The limited sample of exciting 
technological developments that we briefly reviewed here 
suggest that it may be worthwhile to leverage these pow-
erful techniques to reimagine the approaches and ques-
tions asked in the field. Like many others in the field, we 
suspect that attempting to understand systems only in 
molecular terms would be like studying art by investigat-
ing the molecular properties of the materials used. This 
would not only be shortsighted, but it would once again 
circumscribe the future of the field in a narrow concep-
tual space. Our view is that imaging and manipulating 
the very molecular properties that both shaped brain sys-
tems (not just neuronal circuits) during evolution, and 
that now account for and constrain much of their func-
tionality, will open countless windows into the properties 
and mechanisms of the systems (neuronal, glial, etc.) that 
underlie the marvelously perplexing complexity of brain 
states and behavior.
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