MICRO REPORT

Open Access

Microtubule-associated protein 1 A and tubby act independently in regulating the localization of stereocilin to the tips of inner ear hair cell stereocilia

Song Yi Youn^{1†}, Hyehyun Min^{2†}, Se Rok Jeong³, Jiahn Lee¹, Seok Jun Moon³, Jinwoong Bok² and Chul Hoon Kim^{1*}

Abstract

Tubby mice exhibit hearing impairment due to the loss of stereocilin from the tip regions that connect the tallest stereocilia of the outer hair cells (OHCs) to the tectorial membrane. Stereocilin is an essential stereociliary protein in the OHCs, the mutation of which in humans causes autosomal recessive non-syndromic deafness. Map1a is a modifier of tubby hearing (moth 1), and its wild-type allele, rather than the moth 1 allele from the C57BL/6J strain, restores. stereocilin localization to the stereocilia and rescues the hearing impairment of tubby mice. The mechanism by which MAP1A accomplishes this is unclear, partly due to ambiguity regarding whether the tubby mutation is a true null. We therefore generated Tub-null ($Tub^{-/-}$) mice by deleting exon 3 and found that they exhibit hearing impairment like that of tubby mice, suggesting the tubby mutation is a loss-of-function mutation with regard to hearing. When we crossed $Tub^{-/-}$ mice with AKR mice that have wild-type Map1a alleles, we found that wild-type MAP1A restores stereocilin localization to the tips of stereocilia and rescues hearing impairment. These data suggest MAP1A does not require interaction with tubby protein in maintaining stereocilin at the tips of stereocilia and that OHCs use two independent molecules—MAP1A and tubby—to doubly ensure proper stereocilin localization.

Keywords: Tubby, MAP1A, Stereocilia, Stereocilin, Cochlear

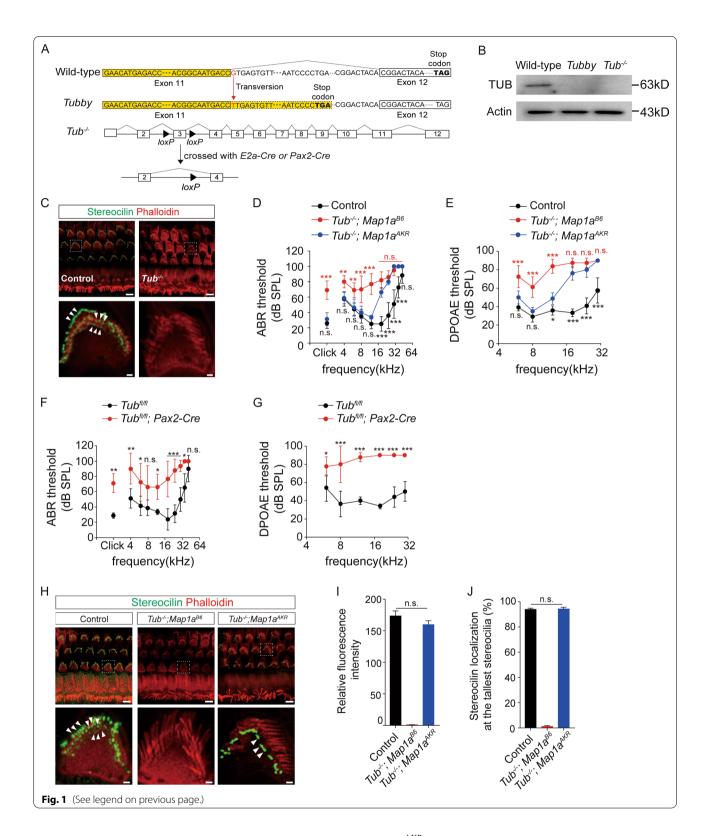
Tubby mice show obesity, blindness and deafness [1]. The *tubby* mutation is a G-to-T transversion that causes a splicing defect in the 3'-end of the *Tub* gene [2], but the molecular mechanisms underlying these phenotypes in *tubby* mice have been remained mysterious for a long time. We recently revealed the molecular mechanism by which tubby mice develop hearing impairment. Stereocilin, which should be localized to the tips of auditory

[†]Song Yi Youn and Hyehyun Min contributed equally to this work

*Correspondence: kimhoon@yuhs.ac

¹ Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 03722 Seoul, Korea Full list of author information is available at the end of the article

stereocilia, is mislocalized in *tubby* mice [3]. Stereocilin is essential for maintaining the physical links between the outer hair cell (OHC) stereocilia and the tectorial membrane (TM), which is called TM-attachment links (TMALs). Strc knockout (KO) mice have defective TMALs, which are essential for mechanotransduction, leading to hearing impairment [4]. Naturally, tubby mice phenocopy *Strc* KO mice [3]. *Map1a* is a modifier of tubby hearing (moth1) [5] and, intriguingly, its wildtype allele, rather than the *moth1* allele from C57BL/6J mice, rescues the hearing impairment of *tubby* mice [3, 5]. Because tubby protein is highly expressed in neurons including spiral ganglion neurons that innervate the hair cells of the Organ of Corti, the mechanism of hearing


© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. rescue by microtubule-associated protein 1 A (MAP1A) was considered neuronal. For example, some expected it was related to MAP1A's ability to bind the PSD95 postsynaptic protein [6, 7]. The recent progress showed that MAP1A possesses distinct and unexpected roles in the inner ear hair cell system; MAP1A regulates the stereociliary localization of stereocilin [3]. Due to the microscopic size and inaccessibility of the inner ear stereocilia, we have little information about the molecular interactions that support the localization of the stereociliary proteins (e.g., stereocilin, CDH23, PCDH15, TMC, etc.) required for normal hearing. These points suggest further study of MAP1A's role will help clarify how the localization of stereociliary proteins is regulated.

First, we wanted to address whether MAP1A acts independently of mutant tubby protein to show that MAP1A itself regulates stereocilin localization. While we were unable to detect any tubby protein in the OHCs of *tubby* mice [3], the presence of *Tub* transcript and tubby protein were reported in the retina and the cochlear of *tubby* mice [5, 8]. To solve this problem, we generated Tub conditional KO mice in which exon 3 of the Tub gene is flanked by loxP sites. The resulting *Tub*^{flox/flox} mice were crossed with a global "Cre-deleter" mice (E2a-Cre) to produce homozygous null offspring (Fig. 1 A, B). In a previous study, targeted deletion of the Tub gene was found to causes retinal degeneration and obesity, suggesting the tubby mutation is a loss-of-function mutation at least in terms of these two *tubby* mouse phenotypes [9]. But, no one has reported whether *Tub*-null ($Tub^{-/-}$) mice also show hearing impairment. Immunofluorescence staining in $Tub^{-/-}$ mice we generated revealed that stereocilin proteins in the OHC stereocilia disappeared (Fig. 1C). Accordingly, we found that $Tub^{-/-}$ mice show elevated auditory brainstem response (ABR) thresholds like the ABR shifts observed in *tubby* mice [3] (Fig. 1D). $Tub^{-/-}$ mice also showed elevated thresholds and reduced amplitudes of their distortion product otoacoustic emissions (DPOAEs), which are used to assess OHC integrity (Fig. 1E) (see Additional file 1 for the detailed methods and Additional file 2 for amplitude of DPOAEs). These findings confirm hearing impairment in $Tub^{-/-}$ mice and suggest that the hearing impairment of *tubby* mice is due to a loss-of-function of Tub gene. We next examined whether the deletion of *Tub* gene in the inner ear causes hearing impairment using *Tub*^{flox/flox}; *Pax2-Cre* mice. We observed that deletion of Tub in the inner ear is responsible for hearing impairment in *tubby* mice (Fig. 1F, G; Additional file 2 for amplitude of DPOAEs and immunofluorescence staining of stereocilin), confirming that the site of action of tubby is cochlear. Ultimately, we explored whether wild-type MAP1A can rescue both hearing impairment and stereocilin mislocalization in Tub-deficient mice. The genetic background of $Tub^{-/-}$ mice is C57BL/6J that has a nonprotective variant of Map1a ($Tub^{-/-}$; $Map1a^{B6}$). Sequential mating $Tub^{-/-}$ mice with AKR mice produced offspring that lack Tub but have a wild-type, protective *Map1a* allele ($Tub^{-/-}$; *Map1a^{AKR}*). We found that $Tub^{-/-}$; *Map1a^{AKR}* mice show the recovery of ABR threshold shifts and loss of DPOAE amplitudes (Fig. 1D, E) similar to that reported in tub/ tub; $Map1a^{AKR}$ mice [3] and restore the localization of stereocilin to the tips of the tallest OHC stereocilia (Fig. 1H). These findings indicate that MAP1A by itself may regulate the localization of stereocilin. Because we did not look for changes in the level of stereocilin protein in the OHCs, we cannot rule out the possibility that TUB or MAP1A might affect stereocilin expression or stability. This would obviously also affect its localization to the stereocilia. It also remains unclear whether the MAP1A-mediated localization of stereocilin to the tips of the stereocilia in $Tub^{-/-};Map1a^{AKR}$ mice shows an agedependent decline and it is more vulnerable to aging or environmental stressors such as noise.

MAP1A plays important roles in stabilizing microtubules in neurons [10]. However, its roles in other cell

(See figure on next page.)

Fig. 1 Wild-type MAP1A can rescue hearing impairment and preserve the localization of stereocilin to the tips of stereocilia in the absence of tubby protein. A Tub^{flox/flox} mice were crossed with E2a-Cre mice expressing Cre in germ cells to produce null mutant mice. B Absence of a tubby protein band at the expected molecular size of approximately 63 kDa in western blots of the brain lysates from tubby mice and Tub-null mice. Immunostaining of stereocilin in the stereocilia of 5–7-week-old control B6J (wild-type or Tub[±]) and Tub-null mice. A representative image from one of three experiments is shown. Arrows indicate the localization of stereocilin in the stereocilia. Scale bars: low-magnification images, 5 mm; high-magnification images, 0.5 mm. **D**, **E** ABR (D) and DPOAE (E) were measured in 5–7-week-old control (wild-type or Tub[±]), Tub^{-/-} (Tub^{-/-}; Map1a^{B6}) and Tub^{-/-}; Map1a^{AKR} mice. Tub-null mice were crossed with AKR/N mice which have a Map1a^{AKR} allele. Tub[±]; Map1a^{AKR} mice were crossed together to generate $Tub^{-/-}$; $Map1a^{AKR}$ mice. *P < 0.05, **P < 0.01, ***P < 0.01 compared to $Tub^{-/-}$; $Map1a^{AKR}$ mice. n = 4 - 6. **F**, **G** $Tub^{flox/}$ flox mice were crossed with Pax2-Cre mice. Tub+/flox; Pax2-Cre mice were crossed together to generate Tub^{flox/flox}; Pax2-Cre mice. ABR (F) and DPOAE (G) were measured in 5–7-week-old $Tub^{flox/flox}$ and $Tub^{flox/flox}$; Pax2-Cre mice. *P < 0.05, **P < 0.01, ***P < 0.001 compared to $Tub^{flox/flox}$ mice. n = 4. H Immunostaining of stereocilin was performed in control B6J (wild-type or Tub[±]), Tub^{-/-} (Tub^{-/-}; Map1a^{B6}) and Tub^{-/-}; Map1a^{ARR} mice. A representative image from one of three experiments is shown. Arrows indicate the localization of stereocilin in the stereocilia. I Quantification of stereocilin fluorescence intensity in the tallest row of stereocilia. Average fluorescent intensity was measured in 13–20 hair cells per mouse and averaged across three mice for each group. Images were analyzed using ImageJ. J Quantification of the number of the tallest stereocilia with stereocilin at their tips. Eight to ten hair cells in each mouse were counted and averaged across three mice for each group. All data are presented as means ± SEM

types are obscure. The *Map1a* allele from AKR mice also reduces photoreceptor degeneration in *Tulp1-* and *Tub*-deficient mice [11]. However, we observed that $Tub^{-/-}$;

Map1a^{AKR} mice still show obesity (unpublished data), suggesting that sensory cells may share pathologic mechanisms related to MAP1A. The detailed roles of MAP1A

in the cell surface specializations of photoreceptors and cochlear hair cells are waiting to be discovered. Because there has been no report showing the presence of microtubule in the stereocilia, new function of MAP1A other than the conventional role of stabilizing microtubule can be expected. It is unclear why two seemingly unrelated proteins, MAP1A and tubby, contribute to the proper localization of a single stereociliary molecule. Stereocilia are nano-scale structures. However, they have fine cytoskeletal structures and complex protein interaction networks like primary cilia or neuronal postsynaptic densities. Stereocilin might be a core member of the stereociliary protein interactome whose localization is so important to normal hearing that two mechanisms are necessary. In addition, the independent contributions of MAP1A and tubby to the localization of stereocilin suggest it may be important to consider a "two-hit" mechanism when assessing the roles of stereociliary proteins in hearing impairment.

Abbreviations

MAP1A: Microtubule associated protein 1 A; OHC: Outer hair cell; TM: Tectorial membrane.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s13041-022-00966-z.

Additional file 1: Materials and methods.

Additional file 2: Figure S1. Measurements of DPOAE amplitudes. Figure S2. Disappearance of stereocilin from hair cell stereocilia in Tubflox/flox; Pax2-Cre mice.

Author contributions

SYY and CHK conceptualized and designed the research. SYY, HM, SRJ and JL conducted the experiments. SJM contributed reagents or materials. HM, SJM and JB analysed the data. SYY, SJM, JB and CHK prepared the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2018R1A5A2025079, NRF-2019R1A2C3002354 to C.H.K.; NRF-2016R1A5A2008630 to S.J.M and J.B) and by a faculty research grant of Yonsei University College of Medicine (6-2017-0166).

Availability of data and materials

All data and materials are available upon requests.

Declarations

Ethics approval and consent to participate

All animal experiments were performed in compliance with guidelines approved by the Institutional Animal Care and Use Committee (IACUC) of Yonsei University Health System (Reference Number: 2020 – 0226).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 03722 Seoul, Korea. ²Department of Anatomy, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03722 Seoul, Korea. ³Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, 03722 Seoul, Korea.

Received: 19 July 2022 Accepted: 4 September 2022 Published online: 14 September 2022

References

- Mukhopadhyay S, Jackson PK. The tubby family proteins. Genome Biol. 2011;12(6):225.
- Noben-Trauth K, Naggert JK, North MA, Nishina PM. A candidate gene for the mouse mutation tubby. Nature. 1996;380(6574):534–8.
- Han W, Shin JO, Ma JH, Min H, Jung J, Lee J, et al. Distinct roles of stereociliary links in the nonlinear sound processing and noise resistance of cochlear outer hair cells. Proc Natl Acad Sci U S A. 2020;117(20):11109–17.
- Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, et al. Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature. 2008;456(7219):255–8.
- Ikeda A, Zheng QY, Rosenstiel P, Maddatu T, Zuberi AR, Roopenian DC, et al. Genetic modification of hearing in tubby mice: evidence for the existence of a major gene (moth1) which protects tubby mice from hearing loss. Hum Mol Genet. 1999;8(9):1761–7.
- 6. Grant SG. Putting tubby on the MAP. Nat Genet. 2002;30(4):347-8.
- Ikeda A, Zheng QY, Zuberi AR, Johnson KR, Naggert JK, Nishina PM. Microtubule-associated protein 1A is a modifier of tubby hearing (moth1). Nat Genet. 2002;30(4):401–5.
- Ikeda S, He W, Ikeda A, Naggert JK, North MA, Nishina PM. Cell-specific expression of tubby gene family members (tub, Tulp1,2, and 3) in the retina. Invest Ophthalmol Vis Sci. 1999;40(11):2706–12.
- Stubdal H, Lynch CA, Moriarty A, Fang Q, Chickering T, Deeds JD, et al. Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol Cell Biol. 2000;20(3):878–82.
- Halpain S, Dehmelt L. The MAP1 family of microtubule-associated proteins. Genome Biol. 2006;7(6):224.
- Maddox DM, Ikeda S, Ikeda A, Zhang W, Krebs MP, Nishina PM, et al. An allele of microtubule-associated protein 1A (Mtap1a) reduces photoreceptor degeneration in Tulp1 and Tub Mutant Mice. Invest Ophthalmol Vis Sci. 2012;53(3):1663–9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

