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Abstract

Dopamine is an important catecholamine neurotransmitter modulating many physiological functions, and is linked
to psychopathology of many diseases such as schizophrenia and drug addiction. Dopamine D1 and D2 receptors
are the most abundant dopaminergic receptors in the striatum, and although a clear segregation between the
pathways expressing these two receptors has been reported in certain subregions, the presence of D1-D2 receptor
heteromers within a unique subset of neurons, forming a novel signaling transducing functional entity has been
shown. Recently, significant progress has been made in elucidating the signaling pathways activated by the D1-D2
receptor heteromer and their potential physiological relevance.

Background
Dopamine plays a key role in the regulation of various
physiological functions of normal brain including
reward, locomotion, behavior, learning, and emotion. It
is not then surprising that the dysregulation of the
dopaminergic system has been linked to pathophysiology
of many diseases, such as Alzheimer’s disease, schizo-
phrenia, Parkinson’s disease, attention deficit hyperactiv-
ity disorder, depression and drug addiction [1-3],
leading to the clinical use of drugs that target dopamine
neurotransmission in the treatment of these disorders.
Five subtypes of dopamine receptors (D1R-D5R),

belonging to the G-protein-coupled receptor (GPCR)
superfamily have been cloned, through which dopamine
transduces its various effects. Dopamine receptors are
subdivided into D1-like (D1, D5) and D2-like (D2, D3,
D4) receptor subclasses [1-3], with the D1 and D2
receptors being the major subtypes. The most studied
dopamine signaling pathway is the modulation of cyclic
AMP production, with D1-like receptors activating cyc-
lic AMP production through Gs/olf, and D2-like recep-
tors inhibiting adenylyl cyclase (AC) activity through Gi/
o proteins [2]. This results in a bidirectional modulation
of this pathway and related proteins, such as protein

kinase A (PKA) and DARPP-32 (dopamine and cAMP
regulated protein) [4]. Other important dopamine sig-
naling pathways have also been reported, including the
modulation of the Akt-GSK3 pathway [5] and the acti-
vation of the PAR4 signaling pathway [6].
For some actions of dopamine, such as the control of

motor behavior [7] or dopamine-mediated reward pro-
cesses in nucleus accumbens [8], a concomitant stimula-
tion of D1 and D2 receptors is required, a phenomenon
known as the “requisite” D1/D2 synergism [9]. In this
type of synergism, D1 and D2 receptor-specific drugs
potentiate the effect exerted by each other when deliv-
ered together, but are ineffective when administered
separately [9]. The combined, but not separate, adminis-
tration of a selective D1 and a selective D2 agonist was
shown to be necessary for the dopamine-stimulated
expression of immediate-early gene c-fos in striatal neu-
rons [10] and in electro-physiological studies where
both receptors were indeed responsible for GABA
release in striatum [11]. The participation of both D1
and D2 receptors was also required for evoking neural
and behavioral sensitization to cocaine [12] and for
evoking the changes in behavior and basal ganglia out-
put [13,14]. All these observations are other evidence
for the presence of not only a synergism between dopa-
mine D1 and D2 receptors, but an obligatory participa-
tion of both receptors to generate this synergism.* Correspondence: s.george@utoronto.ca
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One explanation for how the well documented syner-
gistic effects seen between D1 and D2 receptors [15,16]
may be achieved is through the formation of heterooligo-
mers between the two receptors, as it has been shown for
many GPCRs [17-19]. Dopamine receptors, all subtypes
included, in addition to their ability to exist as homo-
mers, were shown to form different heteromeric com-
plexes with other receptors (reviewed in 20). The
presence of D1-D2 receptor heteromers with unique
functional properties was first shown in transfected cells
using different methods [21-24] as described below. Initi-
ally, the notion of heteromerization observed for many
GPCRs and its functional relevance was not completely
clear in physiological conditions and was in some cases
regarded with a degree of skepticism, but at least for the
D1-D2 receptor heteromer we have shown evidence of
occurrence under physiological conditions in native tis-
sues with emerging important functional relevance.
For D1 and D2 receptors, the presence of two anato-

mically segregated sets of neurons, forming the striato-
nigral D1-enriched direct pathway and the striatopallidal
D2-enriched indirect pathway is commonly recognized,
with D1R localizing to the dynorphin (DYN)-expressing
neurons, and D2R localizing to the enkephalin (ENK)-
expressing neurons [25,26]. Recent studies emanating
from fluorophore-tagged promoter elements of D1R and
D2R in bacterial artificial chromosome (BAC) transgenic
mice [27] allowed an evaluation of the proportions of
striatal neurons expressing D1R, D2R, or both [28-32].
There were, however, variations in the levels of expres-
sion of EGFP between one line and another [32], result-
ing in incomplete labeling of a significant proportion of
striatal medium spiny neurons (MSNs) [28]. While this
method supported the segregation between the D1-
enriched direct pathway and the striatopallidal D2-
enriched indirect pathway, a certain fraction of MSNs
(~17%) expressing both receptors was predicted in the
NAc shell, whereas only ~5-6% of MSNs were calculated
to co-express both receptors in the dorsal striatum
[30-32]. These BAC-calculated colocalization data are
consistent with our data and the numerous other
reports indicating a colocalization of D1R and D2R in
neurons in culture or in situ with higher D1R and D2R
co-localization observed in cultured striatal neurons (60
to 100%) than in the adult striatum [33-40].

Presence of dopamine D1-D2 receptor heteromers in
brain
Several reports indicated the presence of a D1-like recep-
tor activating IP3 production and/or increasing intracellu-
lar calcium in neurons in culture or slices from different
brain regions, including striatum, hippocampus, and cor-
tex [41-44]. However, the cloned D1R was devoid of such
effects when expressed in different host cells (reviewed in

17 and 20) and persisted in a D1 receptor null mouse
model [45]. We then demonstrated that dopamine D1 and
D2 receptors form functional heterooligomeric complexes
in cells and in vivo [21-23,40,46] and that the mobilization
of intracellular calcium was in fact a unique signaling
pathway resulting from the activation of this D1-D2 het-
eromeric receptor complex [21,23,40].
The presence of the D1-D2 receptor heteromer was

demonstrated by different techniques including coimmu-
noprecipitating both receptors from rat striatum, as well
as from cells coexpressing D1R and D2R [21,40], and by
different methodologies using the fluorescence resonance
energy transfer (FRET) technique in cells [22,24], in stria-
tal neurons [40,47] and different brain regions [40,46].
Interestingly, in adult rat brain, coexpressed dopamine

D1 and D2 receptors were present in a unique subset of
neurons coexpressing both DYN and ENK neuropep-
tides in different brain regions, including nucleus
accumbens (NAc), caudate-putamen (CP), ventral palli-
dum, globus pallidus (GP), and entopeduncular nucleus
[46], with some inter-regional variation. The lowest pro-
portion (~6-7%) of D1R-expressing neurons that coex-
press D2R was shown in the CP [40,46], whereas the
highest proportion (~59%) of D1R-expressing neurons
that coexpress D2R was observed in GP [46]. A substan-
tial number (~20-30%) of D1R neurons that coexpress
D2R was also observed in NAc [40,46], consistent with
the anatomical findings resulting from BAC transgenic
mice [30-32].
The direct interaction of D1R and D2R to form het-

eromers in brain was shown by confocal FRET techni-
que using two methodologies [40,46,47]. The confocal
FRET technique demonstrated clearly and directly the
presence of the D1-D2 receptor heteromer in striatal
neurons [40,47] and in brain in situ [40,46]. In NAc,
acceptor photobleaching-based FRET showed a high
FRET efficiency of ~21% [46], in the same range (~20%)
as with a second quantitative confocal FRET, that
further quantified the parameters of the interaction
between D1R and D2R to calculate the FRET efficiency
and the assessment of the distance separating both fluo-
phore-tagged receptors [40,46]. In NAc, interactions
between colocalized D1R and D2R (Figure 1) displayed
high FRET efficiency (~20%) and a relative distance of
5-7 nm (50-70 Å) (Table 1), synonymous with a close
proximity between D1 and D2 receptors and indicative
of D1-D2 heteromer formation. In contrast, although an
indication of D1-D2 heteromer formation in CP was
observed, the parameters, FRET efficiency (~5%) and
the relative distance of 8-9 nm (80-90 Å) between the
receptors suggested that in CP either D1R-D2R interac-
tion was weaker, or fewer D1-D2 receptor heteromers
were formed, and/or lower order of D1-D2 oligomers
than in the NAc was present [40,46].
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D1-D2 receptor heteromer-induced signaling pathway
and its physiologic relevance
The specific activation of the D1-D2 receptor heteromer
in postnatal striatal neurons [40], and from cells

co-expressing D1R and D2R [21,23] resulted in the
intracellular release of calcium from stores sensitive to
activation of inositol triphosphate receptors (IP3-R).
This rise in intracellular calcium was rapid, transient,
independent of extracellular calcium influx, and involved
the activation of Gq protein, and phospholipase C (PLC)
[21,23,40]. This calcium signal resulted in an increase in
the phosphorylated-activated form of CaMKIIa in post-
natal striatal neurons [40] and rat striatum [23]. The use
of dopamine D1-/-, D2-/- and D5-/- receptor null mice
indicated clearly that the calcium-CaMKIIa signaling
pathway exclusively involved both D1R and D2R within
a functional complex [23,40], and was different from the
calcium signal generated by the activation of D5R or the
D2-D5 receptor heteromer [48,49].
Intracellular calcium plays key roles in many neuronal

functions including the regulation of synaptic transmis-
sion [50]. The intracellular calcium signaling pathway
activated through the dopamine D1-D2 receptor hetero-
mer resulted in CaMKIIa activation and BDNF produc-
tion in striatal neurons in culture as well as in the
nucleus accumbens of adult rats, leading ultimately in
cultured postnatal striatal neurons to enhanced dendritic
branching [40]. Both CaMKIIa and BDNF have been
shown to be involved in synaptic plasticity. While

D1 D2 Merged FRET Efficiency Distance

Image

Analysis

Figure 1 Example of Confocal FRET analysis of D1 and D2
receptor interaction in a medium spiney neuron from the core
region of rat nucleus accumbens. Anti-D2-Alexa 350 (green) and
anti-D1-Alexa 488 (red) were used as donor and acceptor dipoles.
The FRET signal was detected and measured in microdomains
[regions of interest (ROIs)] within the neuron coexpressing D1 and
D2 receptors. Analysis shows the FRET efficiency and the distance
separating the dipoles.

Table 1 Confocal FRET analysis of D1 and D2 receptor interaction

ROI Donor of FRET Acceptor of FRET PFRET FRET
Efficiency

Distance between
donor and acceptor (nm)

(1) Donor alone 13.944 0 0 0 10

2 842.685 562.542 529.703 0.357 5.91

3 804.879 488.573 474.042 0.351 5.9

4 830.377 569.241 535.203 0.353 5.924

5 720.099 436.039 410.781 0.319 6.269

6 898.475 482.132 444.885 0.311 6.171

7 964.916 460.029 407.186 0.247 6.875

8 1116.854 399.85 384.365 0.234 6.632

9 951.224 324.177 314.284 0.206 7.145

10 1076.73 341.095 326.925 0.2 7.153

11 976.861 227.299 216.367 0.149 7.789

12 1201.314 363.612 336.45 0.191 7.121

13 998.373 283.121 269.621 0.187 7.197

14 1017.225 303.213 287.876 0.2 6.987

15 816.347 166.339 156.562 0.129 8.069

16 806.034 265.133 251.731 0.19 7.393

17 815.063 349.81 338.709 0.252 6.792

18 833.344 485.752 382.262 0.257 6.946

(19)Non-Specific 95.52 83.573 35.284 0.086 9.168

Average 921.8117 382.821 356.88 0.243117 6.83958

SEM 33.82434 29.9949 27.1577 0.018620 0.165392

Confocal FRET analysis of figure 1 shows the relative expression of the donor (D2-Alexa 350, green) and acceptor (D1-Alexa 488, red). The analysis also shows the
processed FRET (pFRET), the FRET efficiency and the distances separating the two fluorophore-tagged receptors in each microdomain (ROI), with averages and
SEM in the bottom of the table. A distance ~10 nm or higher indicates no FRET.
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evidence has indicated that CaMKIIa is a critical regula-
tor of synaptic plasticity in neurons [51-54] with 50% of
CaMKIIa-deficient mice presenting changes in behavior
and learning [55], BDNF has been shown to modulate
the branching and growth of axons, dendrites and spines
(reviewed in 56). For example, BDNF was shown to be
released from cell bodies and dendrites of cortical neu-
rons and regulated the branching of dendrites in adja-
cent neurons [57]. The BDNF effect on the dendritic
morphology and also on spine morphology (reviewed in
56) would be of great importance in the modulation of
neuronal and synaptic function and plasticity [58]. The
neurotrophin signaling transduced through BDNF
receptor TrkB has been recently reported to be involved
in the control of the size of the striatum by modulating
the number of medium spiny neurons (MSNs), with
deletion of the gene for the TrkB receptor in striatal
progenitors leading to the loss of almost 50% of MSNs
without affecting striatal interneurons [59]. Also, the
BDNF signaling through TrkB was shown to be involved
in the induction and the maintenance of synaptic plasti-
city, through its long-term potentiation (LTP) compo-
nent [60]. The other component, long-term depression
(LTD) was shown to involve BDNF signaling through
the receptor p75 in hippocampal slices from p75-defi-
cient mice [61]. BDNF plays also an important role in
the modulation of neurotransmitter release, a key step
in synaptic plasticity [56]. The release of glutamate for
example involves PLC and BDNF through a mechanism
involving a rise in intracellular calcium via a release
from IP3 receptor-sensitive stores [62,63]. It is very
interesting to draw the parallel between these mechan-
isms by which CaMKII and BDNF modulate synaptic
plasticity and the signaling pathway revealed with the
activation of dopamine D1-D2 receptor heteromer in
the striatum [40], which also involves PLC, the intracel-
lular calcium release from IP3 receptor-sensitive stores,
CaMKII activation and BDNF production. This suggests
that the D1-D2 receptor heteromer-mediated signaling
pathway may play an essential role in synaptic plasticity,
notably in its LTP component [20,40,49], the dysregula-
tion of which may lead to alterations in cognition, learn-
ing, and memory that contribute to the pathophysiology
of dopamine-related disorders such as schizophrenia or
drug addiction [20,40,46,49].
Further, we showed that in rat striatum amphetamine

administration significantly increased the affinity of SKF
83959, a specific D1-D2 receptor heteromer agonist
[64], by 10-fold for the D1-D2 receptor heteromer and
increased the proportion of the D1-D2 heteromer in the
agonist-detected high affinity state [46]. GTPgS binding
studies indicated that the D1-D2 heteromer was func-
tionally supersensitive in response to repeated increases
in dopamine transmission following amphetamine

administration [46]. In addition to increasing the activity
and sensitivity of D1-D2 receptor heteromers, ampheta-
mine also increased the D1-D2 receptor heteromer den-
sity in the NAc as assessed by FRET technique [46].
Interestingly, the increase in the proportion of D1-D2

heteromers in the high affinity state was also detected in
schizophrenia globus pallidus (GP) [46]. Amphetamine
treatment leading to increased dopamine transmission
and behavioral sensitization has been used as an animal
model for schizophrenia [65], since schizophrenia has
been linked to increased dopamine transmission [66].
Moreover, the different components of calcium signal-
ing, including Gq proteins, PLC, and CaMKII were
shown to be affected in the brains of schizophrenia
patients [67]. Given these facts, the findings showing an
increase in the proportion of D1-D2 heteromers in high
affinity state in both schizophrenia and chronic amphe-
tamine treatment may indicate a preponderant role of
the D1-D2 receptor heteromer-mediated calcium-CaM-
KII-BDNF signaling pathway in both drug addiction and
schizophrenia.
This D1-D2 receptor heteromer-calcium signal may

represent a first common biochemical bridge between
the dopaminergic system-CaMKII-BDNF, synaptic plas-
ticity and the occurrence of drug addiction and schizo-
phrenia. The finding that the activation of CaMKIIa
was necessary for the induction of behavioral sensitiza-
tion to drugs [68], a physiological phenomenon that also
requires the coactivation of D1 and D2 dopamine recep-
tors [14], provides additional evidence of the important
role of dopamine D1-D2 receptor heteromer-calcium
signal in drug addiction.
After years of some skepticism surrounding the phy-

siological presence and relevance of GPCR homo- and
hetero-oligomers, there is ample evidence for the pre-
sence in the brain of a unique entity, the D1-D2 recep-
tor heteromer, with a unique signaling pathway different
from the signals generated by each receptor homomer,
with a physiological relevance and high importance in at
least two major pathologies, schizophrenia and drug
addiction, making the D1-D2 receptor an interesting
therapeutic target for these disorders.
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