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Glutamate receptors function as scaffolds for the
regulation of β-amyloid and cellular prion protein
signaling complexes
Alison Hamilton1,2, Gerald W Zamponi3 and Stephen S G Ferguson1,2*
Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects 36 million people worldwide, but
currently has no effective treatment options. One of the original hallmarks of AD are plaques comprised of beta
amyloid (Aβ) and neurofibrillary tangles comprised of phosphorylated Tau protein. However, it is soluble oligomeric
Aβ which is more closely correlated with cognitive decline and is therefore considered to be the neurotoxic
species. Oligomeric Aβ has recently been shown to form complexes with the glycosylphosphatidylinositol
(GPI)-anchored membrane protein, cellular prion protein (PrPc), and these complexes are believed to play an
important role in the progression of AD pathogenesis. Glutamate, the major excitatory neurotransmitter is
responsible for mediating learning and memory under normal physiological conditions. However, the dysregulation
of glutamatergic signaling has also been implicated in a number of neurodegenerative diseases including AD.
Glutamate acts via both ionotropic glutamate receptors (iGluR) and metabotropic glutamate receptors (mGluR),
each of which have been implicated in AD. There is now growing evidence to suggest that mGluR5 may contribute
the AD pathogenesis by acting as scaffolds for the PrPc/Aβ oligomer complex, enabling the propagation of
neurotoxic signaling in AD. In addition, PrPc and Aβ oligomer signaling via NMDARs may also contribute to AD
pathology. The current review overviews our current understanding of the role of PrPc and Aβ oligomers in
regulating glutamate receptor signaling, as well as highlights the importance of understanding these signaling
complexes to develop more effective therapeutic strategies to treat AD.
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Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that is the leading cause of dementia affec-
ting people over 50 years of age. There are approximately
36 million people worldwide with AD, and this number is
expected to double by 2050, as the consequence of an
aging world population [1]. Patients with AD suffer from
memory loss and cognitive decline, which increases in
severity as the disease progresses. Despite the rapidly
growing incidence of AD there is no cure, and current
therapeutic strategies have limited efficacy [1]. Patho-
physiologically, the AD brain undergoes severe shrinkage
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that is caused by extensive synaptic and neuronal loss [2].
The original pathological features of AD were charac-
terised by Alois Alzheimer in post mortem examination of
patients suffering from severe memory loss [3,4]. These
hallmarks include fibrillar plaques primarily composed of
the protein beta amyloid (Aβ) and neurofibrillary tangles
(NFTs) of hyperphosphorylated tau protein [2,5]. How-
ever, additional AD markers include inflammation, charac-
terized by activated microglia, which have been shown to
cluster in brain regions showing substantial neurodegene-
ration [6] and oxidative stress, which results from an im-
balance of reactive oxygen species (ROS) and antioxidants
[7,8]. Recent studies have shown that the metabotropic
glutamate receptor 5 (mGluR5) antagonist MTEP and
mGluR5 knockout is protective in AD mice and that the
N-methyl-D-aspartate (NMDA) receptor antagonist may
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be protective at low concentrations [9,10]. The present
review will overview the contribution of β-amyloid and
cellular prion protein (PrPC) in the regulation of mGluR5
and NMDA receptor signaling.

β-amyloid and PrPC

β-amyloid is a 39–43 amino acid peptide that is the primary
component of the fibrillar plaques that characterize AD
[11]. It is produced by the sequential cleavage of the amyl-
oid precursor protein (APP) by β- and γ-secretases, via
what is known as either the amyloidogenic or β-amyloid
pathway [12-14]. Often referred to as an overflow pathway,
the amyloidogenic pathway, first cleaves APP extracellu-
larly via a β-secretase producing a C99 peptide, which is
subsequently cleaved by the γ-secretase complex resulting
in Aβ oligomer production. However, the major pathway
by which APP is cleaved is the non-amyloidogenic or
α-secretase pathway, in which APP is cleaved by both
α- and γ-secretases producing sAPPα and an APP intracel-
lular domain. The products of the non-amyloidogenic
pathway are considered to be beneficial and are associated
with increased synaptic plasticity and neuronal survival
[15]. Interestingly, β-amyloid is present in the brains of
non-demented individuals, under normal physiological
conditions, and is believed to act as part of a negative
feedback loop in the regulation of synaptic plasticity and
neuronal survival [14]. However, it is the over production
of β-amyloid in AD that likely results in neurodegenera-
tion and cognitive decline [11,16-19].
In addition to its presence in the insoluble fibrillar pla-

ques, which characterize AD, β-amyloid exists in the
brain in the form of soluble Aβ oligomers [17]. While
early AD research focused on Aβ plaques as the neuro-
toxic species [20], recent evidence suggests that plaques
may actually be a physiological ‘end point’ of limited
harmfulness, while soluble oligomeric Aβ isoforms, in
particular the Aβ42 fragment, are the primary source of
neurotoxicity [21,22]. The accumulation of Aβ oligomers
predominantly occurs in brain regions associated with
learning and memory, including the hippocampus, and
binds to sites that are located at neuronal synapses to
cause the disruption to neuronal signaling and ultimately
neuronal cell death [23,24]. A number of Aβ oligomer
binding sites have been proposed, encompassing, but
not limited to, glutamate receptors (both ionotropic and
metabotropic), insulin receptors, acetylcholine receptors
(both muscarinic and nicotinic), as well as cellular prion
protein (PrPc) which may function as a co-receptor for
Aβ [9,25-28]. Although the precise binding site remains
controversial, Aβ oligomers presumably act via multiple
receptors at synapse, thereby contributing to the range
of issues that characterize AD.
PrPc is a glycosylphosphatidylinositol (GPI)-anchored

membrane protein, whose normal cellular function re-
mains unclear [29]. However, PrPc can undergo a confor-
mationally inappropriate folding resulting in scrapie prion
protein (PrPSc) that is linked to transmittable spongiform
encephalopathies that cause terminal neurodegenerative
disorders in both human and animals [30]. Several ligands
bind to PrPc including the laminin γ1-chain, Cu2+ ions
and Aβ42 oligomers [28-30]. Aβ42 oligomers bind to PrPc

with nM affinity [25]. PrPc is suggested to be required for
the suppression of long-term potentiation (LTP) in hippo-
campal slices, but LTP has been reported in hippocampal
slices derived from PrPc null mice [25].

Glutamate
Glutamate is the major excitatory neurotransmitter in
the brain. Under normal physiological conditions glu-
tamate mediates learning and memory, as well as other
higher order integrative brain function, but pathological
glutamate signaling is also known to contribute to neu-
ronal cell death [31-33]. Glutamate is released into the
synapse following the depolarization of pre-synaptic
neurons and is cleared from the synapse by the GLT
transporter into astrocytes. Under normal physiological
conditions, the removal of glutamate is rapid and neuro-
protective [34]. Glutamate exerts its effects via both
ionotropic glutamate receptors (iGluR) and metabotropic
glutamate receptors (mGluRs). Ionotropic GluRs are ligand-
gated ion channels that include the NMDA, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
kainite receptors that function to mediate the rapid synap-
tic responses to glutamate [33]. In contrast, mGluRs en-
compass 8 subtypes and the activation of these receptors
by glutamate results in slower, longer-lasting, modulatory
alterations in synaptic activity [35].
The dysregulation of and/or pathological signaling of

glutamate receptors is well established for a number of
neurodegenerative diseases, including AD [35]. Glutamate
becomes excitotoxic as the result of overproduction and
impaired clearance from synapses [36]. The excess of glu-
tamate appears to chronically activate both ionotropic and
metabotropic glutamate receptors resulting in the eleva-
tion of intracellular Ca2+ associated with neurodegenera-
tive disease that promotes neuronal injury and cell death
[37]. In the present review, we will overview the hypoth-
esis that mGluR5 and NMDAR function as extracellular
molecular scaffolding proteins, which facilitate the cellular
signaling of PrPc/Aβ oligomer complexes in the patho-
genesis of AD. These PrPc/Aβ oligomer interactions with
glutamate receptors represent a novel target for the pre-
vention and/or attenuation of AD progression.

Metabotropic glutamate receptors
Metabotropic glutamate receptors are members of the G
protein coupled receptor superfamily. There are eight
mGluR subtypes, which are further divided into 3 groups
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based on sequence homology, G protein-coupling spe-
cificity and pharmacological profile [38]. The Group I
mGluRs, mGluR1a and mGluR5a activate phospholipase
C to generate both inositol 1,4,5 trisphosphate and diac-
ylglycerol resulting in the release of intracellular Ca2+

stores and the activation of protein kinase C [38]. Group
I mGluRs, in particular mGluR5, have been specifically
implicated in neurodegenerative diseases such as AD,
Parkinson’s disease and Huntington’s disease [35,39,40].
Interestingly, Group I mGluRs and their interacting pro-
teins have the ability to function in both a neuropro-
tective and neurotoxic manner. For example, in a rat
model of ischemia, mGluR5 antagonists and agonists,
were found to have neuroprotective effects [41]. Group I
mGluRs associate with and/or activate Homer, ERK1/2,
AKT and mTOR signaling pathways [42-46]. These path-
ways are considered to be neuroprotective as they are
important for cell survival, growth and proliferation, in
addition to synaptic plasticity. For example, mGluR1a/
Homer/PIKE protein interactions have been demonstrated
to contribute to the activation of PI3K and functions to
prevent neuronal apoptosis [46]. Furthermore, Group I
mGluRs have been shown to modulate the activity of
ligand-gated ion channels including the NMDAR and play
an important role in regulating both long-term poten-
tiation (LTP) and long-term depression (LTD), which rep-
resent cellular mechanisms involved in both the positive
and negative regulation of synaptic strength, respectively
[47,48]. Similarly, NMDAR activation increases mGluR5
activity [49,50]. Thus, mGluR5 activity is also associated
with excitotoxic cell death, caused by elevated intracellular
Ca2+ by virtue of the ability of mGluR5 to potentiate
NMDAR function [48]. mGluR5 has also been linked to
the RNA binding protein fragile X mental retardation pro-
tein (FMRP), which is known to repress protein synthesis
at the synapse [51,52]. APP is among the proteins regu-
lated by FMRP [51]. The activation of mGluR5 has been
shown to increase FMRP mediated translation of APP,
which could lead to neuroprotection under normal phy-
siological conditions or excessive Aβ production in animal
models of AD [53].
In the human AD brain, mGluR1 expression has been

found to be reduced, with the reduced level of mGluR ex-
pression being correlated to the severity of the disease,
whereas mGluR5 protein expression was unchanged [54].
Interestingly, there is some discrepancy over changes to
mGluR5 expression, with some research suggesting that
mGluR5 mRNA expression is up-regulated [55] and
mGluR5 cell surface expression is increased in a APPs-
wePS1ΔE9 mouse model of AD [10]. Additionally, elevated
expression of mGluR5 has been observed in astrocytes,
most notably with this elevation is observed in astrocytes
found clustered around Aβ plaques [54]. However,
mGluR5 represents a candidate receptor contributing to
the underlying pathogenesis associated with AD [9,10,27].
Differences in mGluR1 and mGluR5 expression, in the AD
brain, present the possibility that these receptors play
functionally distinct roles in the progression of AD path-
ology. This has suggested that mGluR1 may play a protec-
tive role in AD, whereas altered mGluR5 signaling in AD
may be neurotoxic [55]. However, this hypothesis remains
to be clearly determined.

Role of group I mGluRs as scaffolds for the
binding of Aβ oligomers and PrPc

Numerous studies have implicated Group I mGluR sig-
naling in the regulation of Aβ42 toxicity in neurons and
in AD mouse models [9,10,27] and Aβ42 oligomers and
PrPC increase mGluR5a-dependent LTD in vivo [56].
Aβ42 oligomers also induce changes in the subcellular
localization of CaMKII resulting in a reduction of
AMPARs in the synaptic membrane [57]. Aβ42 peptide
is also reported to uncouple mGluR5-dependent activa-
tion of PKC, but not ERK1/2 activity [58]. Oligomeric
forms of Aβ42 also bind to PrPc to alter synaptic plasti-
city and recent work clearly supports the concept that
PrPc is required for Aβ42 oligomer-mediated neuronal
toxicity [25,59-65]. PrPc has been shown to stimulate
Ca2+ release from neuronal intracellular stores in re-
sponse to laminin γ1-chain peptide-dependent activation
of endogenous PrPc, as well as stimulate PKC transloca-
tion to the plasma membrane in response to either
mGluR1a or mGluR5a activation [28]. Laminin γ1-chain
peptide-mediated Ca2+ release from neurons is antago-
nized by either mGluR1a or mGluR5a antagonists and is
not observed in primary neurons derived from PrPc null
mice [28]. More recently, mGluR5, but not mGluR1, has
been suggested to be the primary co-receptor for both
PrPc and Aβ oligomers [9] (Figure 1). Specifically, con-
vincing data from the Stritmatter laboratory indicates
that mGluR5, but not an extensively investigated battery
of other GPCRs (including mGluR1), functions as the
extracellular scaffolding protein receptor that is essential
for the regulation of Aβ oligomer and PrPc signaling in
AD [9]. However, a potential role for mGluR1 cannot be
dismissed given its role in laminin γ1-chain peptide-
mediated Ca2+ release [28]. The report that mGluR5
functions as a receptor for both Aβ oligomers and PrPc

is consistent with a previous study showing that Aβ
oligomers stimulate the lateral diffusion and clustering
of mGluR5 at synapses [27]. This ultimately results in
increased Ca2+ release from intracellular stores ulti-
mately resulting in synaptic deterioration [27]. Whether
this Aβ oligomer-stimulated clustering contributes to
mGluR5- and/or mGluR1-dependent alterations in LTP
and LTD remains to be determined. Nevertheless, the
seminal study by Stritmatter and colleagues provides evi-
dence that mGluR5 plays an integral role in regulated



Figure 1 mGluR5 function as scaffolds for the formation of Aβ oligomer and PrPC signaling complexes. The extracellular domain of
mGluR5 interacts with both PrPc and Aβ42 which results in the activation of Ca2+ release from intracellular stores, PKC translocation and ERK1/2
phosphorylation. Aβ42 and PrPc also activate mGluR5 to stimulate Fyn kinase-mediated and mGluR5 activation has been linked to the regulation
of APP protein translation. APP, amyloid precursor protein; DAG, diacylglycerol; ER, endoplasmic reticulum; ERK, extracellular regulated kinase;
PLCβ, phospholipase Cβ; PrPc, cellular prion protein.
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Aβ oligomer pathology, as the deletion of mGluR5 ex-
pression reduced Aβ oligomer-mediated synapse loss
and mGluR5 antagonist (MTEP) treatment results in the
amelioration of cognitive deficits normally observed
APPswePS1ΔE9 mice at 9 months of age [9]. Consistent
with these observations, we have recently shown that
the genetic deletion of mGluR5 in APPswePS1ΔE9 mice
also results in the reversal of the cognitive deficits
associated with this mouse model of AD at both 9 and
12 months of age, and that soluble Aβ oligomer levels
and Aβ plaques in APPswePS1ΔE9 mice are reduced in
the absence of mGluR5 expression at 12 month of age
[12]. More recently, it has been shown that mGluR5
allosteric modulators can disrupt Aβ oligomer-stimulated
interactions between mGluR5 and PrPC suggesting that it
may be possible to develop new compounds to interrupt
the pathogenesis observed in AD [66]. The observation
that mGluR5 activation increases FMRP-mediated transla-
tion of APP, suggests the possibility that Aβ oligomer
stimulation of mGluR5 may leaded to increased Aβ
production resulting in a positive feedback loop the exac-
erbates AD pathology [53] (Figure 1).
Dysregulation of Group I mGluRs may also further ex-

acerbate AD progression, as a consequence of bidirectional
cross talk with NMDARs, as NMDAR activation may
increase mGluR5 signaling [49,50]. This cross activity
between mGluR5 and NMDARs involves reduced mGluR5
desensitization in response to GRK2 and is also due to
NMDAR-stimulated dephosphorylation of mGluR5 and
Homer protein regulated cross-regulation of AMPAR
activity [49,55,67]. This likely contributes to Group I
mediated regulation of NMDAR-dependent LTP and
LTD [40,68].

NMDARS
In the previous sections, we have discussed mGluRs as
scaffolds for PrPc and β-amyloid in AD. However, glu-
tamate also plays a central role in regulating synaptic
transmission by activating ionotropic receptors, namely
AMPA, kainate and NMDA receptors [69]. There is new
evidence that NMDARs are regulated by both PrPc and
Aβ oligomers [70]. NMDARs are activated by glutamate,
as well as the synthetic agonist NMDA, and the co-
agonists glycine and D-serine which function to modulate
glutamate-dependent activation of NMDARs resulting in
the opening of a cation channel that is permeant to both
Ca2+ and Na+ [71]. This has two major consequences,
first, it creates an electrogenic response that induces an
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excitatory postsynaptic potential, and second, Ca2+ en-
tering via NMDARs triggers cytoplasmic signaling cas-
cades that eventually culminate in altered cellular activity,
such as changes in gene expression. While NMDARs are
important for learning and memory [72,73], their dysfunc-
tion is linked to pathophysiological signaling that is associ-
ated with neurodegenerative diseases such as AD [74-76].
Glutamate binding to NMDARs mediates NMDAR chan-
nel opening, whereas the dissociation of the ligand causes
channel closure (or deactivation) [77]. NMDARs also
undergo a process called desensitization in the prolonged
presence of receptor agonist [78], which is designed to
protect cells from Ca2+ overload. This desensitization pro-
cess is slowed in a dose-dependent manner by the co-
agonist glycine [78,79]. NMDARs are potently regulated
by extracellular Mg2+ ions, which occlude the channel
pore at hyperpolarized potentials, and this block is re-
lieved following membrane depolarization of the post-
synaptic neuron [80,81]. Other metal ions that regulate
NMDARs include Zn2+ and Cu2+ [82-85].

PrPc interactions with NMDARs
NMDARs are functionally modulated by both PrPc and
PrPSc, both in vivo and in vitro [70]. For example, PrPc

null mice exhibit depressive-like behaviours [86] and
reduced pain thresholds [87], which are reversed by
delivery of the NMDA receptor antagonist MK-801.
Moreover, cell death of neuronal cultures infected with
PrPSc is partially abrogated by MK801 treatment [88].
NMDAR activity is also enhanced in PrPc null neurons
[89]. Field potential recordings from hippocampal slices
exhibit an increased number of population spikes that
are exacerbated by the removal of extracellular Mg2+,
and are prevented by the NMDAR blocker APV. In PrPc

null neurons there is also an increase in the amplitude
and duration of the miniature synaptic NMDA currents.
Also, in PrPc null neurons there is a drastic slowing of
the deactivation kinetics of NMDAR currents and direct
delivery of NMDA into the brains of PrPc null mice
increases lesion size compared to WT animals [89]. This
suggests a mechanism by which PrPc regulates subunit
stoichiometry between GluN1 and various types of GluN2
subunits to account for divergent effects on NMDAR
function [70]. In this regard, it is noteworthy that
NMDARs can be co-immunoprecipitated with PrPc from
brain homogenate [85,89], suggesting that PrPc forms a
molecular complex with NMDARs and may function as a
NMDAR ligand, rather than regulating NMDAR function
solely via second-messenger signal transduction pathways.
More recently, we have described a type of PrPc-mediated

modulation of NMDAR activity that is dependent upon
Cu2+ ions [85]. PrPc is a high-affinity Cu2+ binding pro-
tein that contains five Cu2+ binding sites that exhibit
varying Cu2+ binding-affinity [90-92]. When Cu2+ ions
are chelated by the exogenous application of either cupri-
zone or bathocuproinesulfonate (BCS), NMDAR current
amplitudes are increased and receptor desensitization is
slowed, leading to a persistent current [85]. A similar
slowing of NMDAR desensitization is also observed in
neurons either derived from PrPc null mice or upon acute
enzymatic cleavage of PrPc. Importantly, BCS has no fur-
ther effect on NMDAR desensitization in PrPc null neu-
rons. Compared with wild type neurons, the glycine
concentration-dependence of the magnitude of the per-
sistent NMDAR currents is shifted leftward in PrPc null
neurons. Hence, over a wide range of glycine concentra-
tions, there is an increase in the non-desensitizing current
component. Based on these findings, we conclude that in
the presence of PrPc, glycine affinity for the NMDAR is
reduced and thus the receptor desensitizes more rapidly.
Thus, BCS-mediated chelation of copper appears to
weaken the biochemical interactions between PrPc and
the NMDAR complex [85] suggesting that this PrPc/
NMDAR complex is copper-ligand regulated.

Aβ-mediated regulation of NMDA receptor
function
Numerous studies have linked NMDARs to AD and the
clinically utilized AD drug, memantine, is a known allo-
steric blocker of NMDARs [93-96]. In cultured neurons
Aβ42 oligomers appear to initiate spontaneous NMDAR
currents and NMDAR internalization [97,98] and a num-
ber of studies have shown that the molecular mechanisms
underlying Aβ42-dependent alterations in NMDAR ac-
tivity and trafficking are complex [97,99]. It has been
reported that Cu2+ binds to Aβ42 with an attomolar
affinity-constant [100]. In line with what we have de-
scribed above, the application of either nM concentrations
of Aβ42 oligomers, or application of μM concentrations of
Aβ42 monomers, mimics the effect of BCS on NMDAR
function [70], yielding NMDA currents that exhibit reduced
desensitization. Based on our findings, we propose a me-
chanism by which binding of Aβ42 oligomers at nM con-
centrations bind directly to PrPc and alter PrPc-mediated
NMDAR desensitization, whereas Aβ42 monomers, when
present in the low μM range, might in manner analogous
to BCS, simply chelate Cu2+, thus leading to PrPc disso-
ciation from the NMDAR [70]. This mechanism may also
help to account for the disparate findings by various
groups who have investigated the role of Aβ oligomer/
PrPc complexes, in regulating reduction in LTP mediated
by both mGluRs and NMDARs in wild-type mice and AD
mouse models [25,40,59,60,65].
It is important to note that one of the consequences of

slowed NMDAR desensitization is the potential for per-
sistent calcium entry following prolonged glutamate acti-
vation resulting in neuronal cell death [70]. However, if
the elimination of PrPc expression results in slowed
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NMDAR desensitization kinetics that are analogous to
that seen in the presence of Aβ42 oligomers, then one
would also expect to observe AD-like pathology in PrPc

null mice, but this is not the case. They key to answering
this conundrum likely lies in the fact that a slowing of
desensitization kinetics manifests itself pathologically
only when there is prolonged excess of glutamate agon-
ist. In PrPc null mice, synaptic glutamate is likely cleared
quickly by reuptake GLT-1 transport mechanisms on as-
trocytes, and thus NMDARs are only briefly activated at
synapses. In contrast, in mouse models of AD, it is likely
that glutamate reuptake mechanisms are perturbed by
Aβ42 oligomers, leading to the buildup of synaptic and
extra-synaptic glutamate that triggers prolonged activa-
tion of both NMDAR- and mGluR-mediated calcium
entry resulting in cell damage that may contribute to
synaptic loss in AD [101]. In this context it is important
to note that extrasynaptic GluN2B containing NMDA
receptors are thought to be the primary drivers of
excitotoxicity, whereas synaptic GluN2A receptors were
found to be neuroprotective [102-104]. On the other
hand a recent study has linked the degenerative effects
of Aβ to a dysregulation of GluN2A containing receptors
[105]. Precisely how the interactions with the NMDAR
complex occur in a NMDAR subtype specific manner
remains to be determined. Taken together, there is in-
creasing body of experimental evidence suggesting that
PrPc is an important regulator of NMDAR functions that
are regulated by Cu2+ ions. Aβ peptides (in both their
monomeric and oligomeric forms) appear to mediate
dysregulation of NMDAR-mediated synaptic function,
thereby potentially contributing to AD pathology. These
processes may also be further complicated by hyperpho-
sphorylated tau protein and Fyn kinase, which are also
closely linked to NMDARs and PrPc activity, but beyond
the scope of the present review [105-109].

Summary
In summary, mGluR5 and NMDARs represent potential
therapeutic targets for the treatment of AD. Particularly
encouraging, are recent studies in which mouse models
of AD were treated with the mGluR5 antagonist MTEP,
and memory was rescued in the Morris water maze
(MWM) a spatial memory behavioural paradigm [10].
Additionally, in an AD mouse model, in which mGluR5
was genetically deleted, mice showed improved memory
in the MWM, as well as a substantial reduction in Aβ
plaques and oligomers [12]. Of the drugs available for
the treatment of AD, memantine, is a known allosteric
blocker of NMDARs [93-96]. Although memantine is of
limited therapeutic value, the modulation of NMDAR
function may nonetheless offer the possibility for effec-
tive target for the treatment of AD. It is likely that the
effects of Aβ42 oligomers and PrPc on mGluR5 and
NMDAR signaling do not occur in isolation as Aβ42
oligomer binding to PrPc and mGluR5 results in the ac-
tivation of Fyn kinase to regulate signaling downstream
of mGluR5 [10] (Figure 1). This activation of Fyn results
in the phosphorylation of the GluN2B subunit of the
NMDAR that ultimately results in a loss of cell surface
NMDARs [10]. Of particular interest will be to deter-
mine whether the antagonism of Aβ42 oligomer and
PrPc interactions with both mGluR5 and NMDARs will
serve as an effective treatment for AD.
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