
REVIEW Open Access

Insight of brain degenerative protein
modifications in the pathology of
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Abstract

Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline
and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a
major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public
health priority by the World Health Organization. Previous studies have established dementia as a ‘proteinopathy’
caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and
deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated
with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid
side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However,
the technical challenges associated with DPM analysis have recently become tractable due to powerful new
proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have
identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well
as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate
the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome
and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in
quantitative proteomic technologies, describes how these techniques have been applied to the study of
dementia-linked changes in brain protein structure and function, and briefly outlines how these findings
might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein
modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.

Keywords: Dementia, Alzheimer disease, Neurodegenerative disease, Degenerative protein modifications (DPMs),
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Introduction
Dementia is an increasingly common disorder of mental
processes that confers memory loss, mood change, im-
paired reasoning, and eventual difficulty with day-to-day
activities. According to World Health Organization’s
(WHO) recent fact sheet (April 2016) [1], an estimated
47.5 million people worldwide already have dementia
and there are approximately 7.7 million new cases being

diagnosed each year. The total number of people with
dementia is projected to exceed 75 million by 2030, and
almost triple to 135.5 million cases by the year 2050.
This exponential increase in the global prevalence of de-
mentia, combined with its severe impact on patients’
families, caregivers and communities, have led the
WHO to identify dementia as a major public health pri-
ority [2]. In 2010, the total global cost of dementia was
estimated at $604 billion USD, corresponding to 1 % of
worldwide gross domestic product. Indeed, due to the
lack of effective prevention strategies and/or curative
treatments, the social and economic costs of dementia
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disorders have surpassed those attributed to heart
diseases and cancer [3]. Despite recognizing dementia
as priority healthcare challenge throughout the world,
funding allocation to dementia research still lags far
behind expenditure on other major disorders. For ex-
ample, in 2012 the UK allocated just 11 % of total
research funding to dementia studies whereas cancer
research received 64 % [4].
The most common forms of dementia are Alzheimer’s

disease (AD) and Vascular dementia (VaD), which re-
spectively account for 70 and 15 % of all dementia diag-
noses [5], but the boundaries between dementia
subtypes are not clear and mixed forms of these disor-
ders are also thought to contribute to the total disease
burden [6]. In recent decades, scientific study of demen-
tia subtypes has failed to significantly improve our un-
derstanding of disease pathogenesis or generate effective
new treatments or interventions for these disorders [7, 8].
At present, the mechanisms that initiate the disease
process remain largely unknown and severely restricting
attempts have been made to identify novel methods of dis-
ease prevention. Consequently, there remains an urgent
need to better define the molecular basis of dementia
pathogenesis and identify therapeutic targets that can
prevent disease progression and/or alleviate symptoms
in affected individuals.
Several models of dementia pathogenesis have been

proposed since this syndrome was first reported over a
century ago. Initial hypothesizes suggested that dementia
was induced solely by ischemic cerebral vascular disease
or stroke [9, 10]. However, the later discovery of aggre-
gated β-amyloid (Aβ) and Tau proteins [11] in the brain
tissues of dementia patients directed the majority of sub-
sequent research effort towards the study of these two
molecules alone. Accordingly, it was later proposed that
dementia can be triggered by the toxicity of oligomer-
ized proteins including Aβ and Tau which form senile
plaques in the brain [11, 12]. According to this hypoth-
esis, Tau proteins become toxic by forming paired helical
filaments (PHFs) which are assembled into the neurofib-
rillary tangles (NFTs), characteristic of dementia path-
ology. However, Tau oligomers that form before PHFs
and NFTs mediate dementia and neurodegeneration
[11]. The known pathways and mechanisms involved in
Tau oligomer clearance are depicted in Fig. 1. While
substantial data have been presented in support of both
hypotheses, the Aβ and Tau models each overlook sev-
eral major aspects of dementia pathogenesis and have so
far failed to yield a significant breakthrough in therapeu-
tics. Indeed, while Aβ deposition is regarded as a hall-
mark feature and possible root cause of AD, the extent
of Aβ deposition and senile plaques in the brain does
not correlate with dementia severity, and healthy elderly
individuals can exhibit abundant senile plaques even in

the absence of AD [13–15]. The amyloid model of
dementia pathogenesis therefore cannot fully explain
disease initiation, progression, or clinical severity as
observed in human patients.
Given that the burden of senile plaques in dementia

patients does not correlate with cognitive dysfunction,
the ‘proteinopathy’ underlying these disorders is likely to
extend beyond the accumulation of Aβ and Tau protein.
Accordingly, recent data have indicated that neurode-
generative diseases are further associated with DPMs
[16–18] that confer loss of function and/or induce
protein misfolding, aggregation ([19]), deposition, and
degradation [20] in the brain. DPMs are spontaneous,
non-enzymatic, posttranslational modifications caused
by defective protein repair mechanisms and dysregulated
protein turn-over. Increasing evidences from epidemio-
logical, clinical, and experimental studies now suggests
that cerebrovascular disease and hypoxia-ischemia injury
in the brain are primary causes of the proteinopathy
that leads to cognitive impairment and eventual de-
mentia [10, 21–31]. While the pathology of these disor-
ders is strongly associated with the deposition of complex
protein aggregates in the brain, so far there have been few
attempts to determine the roles of key proteins other than
Aβ (or to identify the factors that first promote protein ac-
cumulation). Similarly, the contribution of protein DPMs
to the initiation and progression of plaque formation re-
mains largely unknown due to the technical challenges.
More recently, state-of-the-art mass spectrometry-based
proteomic techniques have allowed investigators to begin
to address these issues by providing unprecedented power
to detect critical changes in brain protein structure and
function at the very earliest stages of dementia pathogen-
esis. Proteomic techniques will therefore be integral to
uncovering the mechanisms that cause human neurode-
generation and dementia, as well as the identification of
clinically useful prognostic biomarkers, and the design of
novel interventions and therapies for affected patients.
This review summarizes how the application of state-of-
the-art proteomics technologies has provided novel
insight into the molecular basis of dementia pathogenesis
and the role of DPM-mediated protein alterations in tissue
damage in the human brain.

Proteomics of dementia disorders and Alzheimer’s
disease
Dementia pathogenesis is typically divided into three
main stages according to symptom and severity; early
asymptomatic disease in which patients remain cogni-
tively healthy, later mild cognitive impairment (MCI)
due to accumulating tissue damage over time, and finally
overt dementia with extensive pathology and disruption
of normal brain functions [32]. It is important to note
that dementia syndromes also include a number of
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distinct sub-pathologies that are each associated with
damage to specific cell types in particular region of the
brain (including AD, VaD, mixed dementia, Parkinson’s
disease[PD], frontotemporal dementia [FTD], MCI, pos-
terior cortical atrophy, traumatic brain injury, Down’s
syndrome, Creutzfeldt-Jakob disease, and normal pressure
hydrocephalus [33]). For example, one of the earliest
symptoms of AD is a deficit in short-term recall due
to tissue damage in the hippocampus, which is the brain
center of learning and memory.
Dementia syndromes are highly heterogeneous and

exhibit complex genetic associations. Current data suggest
that early-onset dementia is caused by mutations in genes
including amyloid precursor protein (APP), presenilin 1
(PSEN1), and presenilin 2 (PSEN2), leading to altered pro-
duction of Aβ peptide, which is the principal component
of senile plaques [34, 35]. Apolipoprotein E (Apo E) en-
hances deposition of Aβ in the brain, and the ε4 allele in
particular is associated with increased pathology (homozy-
gosity for this allele alone confers >8-fold increased risk of

sporadic AD) [36]. Further, ApoE enhanced deposition of
Aβ in the brain was validated using ApoE knockout mice
[37] and crossed ApoE knockout mice with transgenic
mice overexpressing a human mutant APP gene [38] using
immunostaining, as well as thioflavine-S flurescence and
Congo-red birefringency technique [39]. In addition to
other variants, mutations in the MAPT gene that encodes
Tau protein have been strongly linked with the pathogen-
esis of FTD, corticobasal degeneration (CBD), and other
forms of dementia [40, 41]. While these genetic factors
either alone or in combination clearly exert a major
influence on dementia risk [42–44], their exact roles in
the associated tissue pathology remain unclear, and
their expression in the brain may not be sufficient to
confer symptomatic disease.
Patient genotypes are essentially stable over time, and

transcriptomics offers only limited information about
protein expression levels, conformations, and modifica-
tions that occur in cells. In contrast, proteomics can gen-
erate detailed information on cellular protein expression

Fig. 1 Tau oligomer turnover and principal clearance mechanisms. Impairment of one or both clearance pathways leads to protein accumulation
and toxicity which impairs cellular function and eventually induces cell death. (Adapted from Cárdenas-Aguayo et al. [11])
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dynamics and how these are influenced by complex envir-
onmental stimuli. This approach provides unprecedented
scope to assess how brain cell function is altered during
disease progression, and identify the key cellular pathways
that promote pathology in affected tissues. Uncovering
these key pathways and identifying their critical compo-
nents will be essential for the development of effective
new therapies for dementia patients. Proteomic ap-
proaches, therefore, have an important role to play in the
study of dementia syndromes, since these techniques not
only enable protein quantitation, but also the identifica-
tion of key interacting partners and dynamic structural
modifications, which exert major influences on protein
distribution and function in human cells and tissues.
Recent advances in proteomic techniques have enabled

comprehensive analysis of protein biology in a wide
range of settings. A typical proteomic work-flow for
identifying and profiling protein DPMs involves protein
separation, trypsin digestion, LC-MS/MS analysis and
database searches. In addition to label-free proteomic
methods, isobaric tags for relative and absolute quantita-
tion (iTRAQ) and tandem mass tag (TMT) protein la-
beling techniques are now widely-accepted approaches
for quantitative profiling of proteins and their modified
variants in both cell lines and clinical tissue samples
[45–52]. The presence of aggregated protein plaques in
the brain is a common clinical manifestation of demen-
tia, but the specific molecular mechanisms underlying
each disease subtype may be distinct. Distinguishing
subtypes of dementia is difficult to achieve without ac-
cess to well-characterized clinical samples of specific
brain regions, efficient methods of isolating plaques and
aggregated proteins from tissue samples, and reliable
techniques for determining the composition of both sol-
uble and aggregated proteins and their associated DPMs.
To this end, our laboratory has recently developed a
number of techniques for the enrichment and quantifi-
cation of amyloidal proteins, as well as the robust deter-
mination of specific DPM events and their locations in
diverse protein families [47, 48, 51–56].

Technical advances in identification of amyloidal proteins
and associated DPMs
Alterations in protein function and aggregation are key
features of neurodegenerative diseases, but the factors
that initiate and promote protein aggregation, accumula-
tion, and deposition in insoluble plaques remain poorly
defined. Due to their limited solubility and propensity
for self-association, accurate identification and quantifi-
cation of amyloidal plaque proteins in brain tissue ex-
tracts remains technically challenging. Previous attempts
to isolate amyloidal proteins from human or rodent
brain tissues have relied on the use of detergents or
detergent-free buffers to perform sequential extraction

and quantification by enzyme-linked immunosorbent
assay (ELISA), immunoblotting, or immunocytochem-
istry [57, 58]. Du et al. [59] used quantitative in vitro
kinetic aggregation assay that selectively, sensitively and
quantitatively detect Aβ amyloid load in a variety of cell
and tissue homogenates. Although different techniques
like ELISA, immunoblotting, or immunocytochemistry
were used to detect and quantify Aβ, these approaches
were unable to fully elucidate either the composition or
aggregation state of the constituent amyloids. The sem-
inal studies utilized circular dichroism (CD) and NMR
techniques to track the conversion of Aβ from soluble
α-helical form to a fibrillar β-sheet protein [60]. As
reviewed by Miller et al. [61], fourier transform infrared
(FTIR) spectroscopy technique which is sensitive to
the secondary structure of proteins can also be useful
in investigating the process of protein misfolding and ag-
gregate formation. In fact, techniques like x-ray crystallog-
raphy and nuclear magnetic resonance (NMR) enable
researchers to determine the three-dimensional structure
of proteins; however, such techniques are not in the scope
of this review. Recently developed, a novel proteomic
approach based on ultracentrifugation-electrostatic repul-
sion hydrophilic interaction chromatography (UC-ERLIC)-
coupled mass spectrometry made possible the detailed
characterization of protein aggregates in human brain tis-
sues affected by dementia [53]. Using a standard detergent
buffer, this technique was able to successfully extract amy-
loids, soluble proteins, and insoluble aggregates from hu-
man brain tissues and identify dementia-associated
changes in amyloid plaque composition, relative protein
abundance, and extent of detrimental DPMs. Both the sol-
uble proteins and amyloidal plaques were profiled using
LC-MS/MS, which revealed that the insoluble aggregates
were significantly enriched in proteins including S100A9,
ferritin, hemoglobin subunits, collagen, and creatine
kinase [53]. Intriguingly, plaque enrichment in S100A9 was
attributable to the accumulation of the deamidated variant
of this protein, suggesting a critical role of protein deami-
dation in the pathology of dementia. However, in this case
report, authors used one patient without pathological con-
firmed degeneration and no analysis of tissue from control
group remains as a major limitation. Further refinement of
our previously reported protocol (Fig. 2) should enable fu-
ture studies to improve the detection and identification of
amyloidal proteins in human brain tissues [53].
Most types of DPM involve the addition of small chem-

ical motifs to protein side [62] chain functional groups
and confer minor shifts in overall mass [63]. These
modifications cause alterations in peptide/protein charge
and hydrophobicity, but due to their low abundance in the
trypsin-digested protein sample, detection of these
DPM-modified variants remains extremely challenging.
However, by using an ion exchange column running in
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hydrophilic interaction liquid chromatography (HILIC)
mode, the altered charge-state and hydrophilicities of the
DPM-modified peptides make it possible to distinguish
these from their unmodified counterparts via LC-MS/MS
[56]. Moreover, the unmodified and modified peptides
elute from the ion exchange column in a predictable order
based on their charge densities in the LC-MS/MS mobile
phase. Consequently, each of the peptide variants can be
separated using electrostatic-interaction modified HILIC
hydrophilic interaction liquid chromatography (emHILIC)
methods together with weak anion exchange (WAX)/
strong anion exchange (SAX) columns in ERLIC for on-
line ERLIC-MS/MS analysis. Alternatively, peptide vari-
ants can be separated via the use of weak cation exchange
(WCX) columns in electrostatic attraction hydrophilic
interaction chromatographic mode (EALIC) for online
EALIC-MS/MS analysis.
The extent of DPMs and PTMs of proteins in complex

samples can be accurately quantified to infer their

biological functions if the whole proteome of complex
samples can be recorded in a single dataset without
fractionation. A chromatographic strategy that uses a long
(50 cm) anion-exchange capillary column operating in the
electrostatic repulsion-hydrophilic interaction mode
(LERLIC) and coupled directly to MS/MS has been devel-
oped for complex proteome analysis in a single injection
[62]. The LERLIC-MS/MS method has been applied to
resolve and quantify N- and Q-deamidation products, i.e.
peptides containing iso-asp/asp or peptides containing γ-
glu/α-glu isomers. Any deviation from the expected ratio
(iso-asp/asp = 3 or γ-glu/α-glu =1.7) of spontaneous
changes indicated enzymatic activities. The results from
the study demonstrate that LERLIC-MS/MS can be used
to perform an in-depth study of protein DPMs on a global
proteome scale. This new strategy may be used to eluci-
date the biological implications of DPMs/PTMs in aging
and disease conditions. The applications of different tech-
niques along with their strengths and limitations have

Brain or other tissue samples

Homogenize in detergent buffer (SDC or SDS)

Soluble protein Soluble amyloidal protein

Supernatant

Dissolve in detergent buffer

Ultracentrifuge

Ultracentrifuge at 100,000 g

Pellet

Supernatant Pellet

Dissolve in formic acid

Tryptic digestion, RPLC-MS/MS, ERLIC-MS/MS and EALIC-MS/MS analysis

Error tolerance or mass tolerance search LC-MS/MS data for DPMs /PTMs 

Protein identification, quntitation and their DPMs/PTMs

Interpretation, conclusion and further validation

Insoluble amyloidal protein

Fig. 2 Flowchart summary of the isolation, identification and quantification of both soluble and insoluble amyloid proteins and their DPMs using
a proteomic approach
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been tabulated in Table 1. Further proteomics techniques
like top-down, bottom up with ECD/ETD and non-ECD
methods for identifying DPMs such as deamidation were
revived by Hao et al. [48].

Mass spectrometry based quantitative analysis of brain
tissues in clinical settings
Use of stable isotope incorporation to facilitate relative
quantification of proteins has become a vital technology
in modern proteomic research. In a previous study, the
temporal cortex of patients with pathologically-confirmed
VaD was compared with matched control brain tissues
using a 2D liquid chromatography-coupled tandem mass
spectrometry-based iTRAQ technique (2D-LC-MS/
MS-iTRAQ) [46]. In this report, proteomic profiling of
the specific brain region known as Brodmann area (BA)
21 revealed VaD-associated up-regulation of 144 proteins
including superoxide dismutase, neural cell adhesion
molecule, and ATP synthase subunit α, suggesting a
state of hypometabolism, vascular insufficiency, and tissue
inflammation. These proteomics results were further
validated using western blot analysis by selecting proteins
involved in different pathways such as energy metabolism
(e.g. ATP5A, UQCRC2), oxidative stress (e.g. SOD1,
ferritin), inflammation (e.g. NCAM, ICAM5), synaptic
transmission (e.g. SYNPO, syntaxin) and apoptosis
(e.g. HSPA4, PEA15, VDAC1), oxidative phosphorylation
(i.e. SDHB, MT-CO2 and NDUFB8). Furthermore, iTRAQ
quantitative proteomic analysis of brain samples from
VaD subjects also indicated significant down-regulation of
ion channel proteins including V-type proton ATPase
subunits D and F, Obg-like ATPase 1, and ATP5F1
(ATP synthase, H+ transporting, mitochondrial F0 com-
plex, subunit b) [45]. Using proteomics and structural
modeling of the multi-functional ion channel protein
Na+-K+-ATPase, Sze and coworkers proposed that im-
paired regulation and function of Na+-K+-ATPase contrib-
utes to the pathophysiology of VaD [45]. These data are
consistent with the known role of Na+-K+-ATPase in
maintaining differential membrane potential in neurons
for effective signal transduction, as well as reports
that Na+-K+-ATPase expression and/or function are
dysregulated in both disease models and brain tissues
from dementia patients [64].
Synaptic failure is the most common feature observed

in both VaD and AD, and loss of synapses and/or synaptic
contacts is a critical determinant of cognitive impairment
in VaD and other neurodegenerative diseases [51, 65].
Similarly, a decline in synapse number in the hippocampal
dentate gyrus has been reported to correlate with im-
paired performance during cognitive testing in AD
[66]. These data suggest that hippocampal degeneration
is central to pathological memory loss in AD. Another
archetypal feature of AD is mitochondrial dysfunction,

although the underlying basis of this defect remains un-
clear. One of the many current hypotheses (summarized
in Fig. 3) suggests that mitochondrial dysfunction in neu-
rodegenerative disorders results in the generation of react-
ive oxygen species and oxidative stress, thereby inducing
DPMs that impair protein function and promote aggrega-
tion in affected tissues. For example, Caspersen et al. used
transgenic mice expressing human mutant amyloid pre-
cursor protein (mAPP) to demonstrate that accumulation
of Aβ in brain mitochondria impairs neuronal function
and promotes cellular dysfunction [67]. Consistent with
these data are reports that the early stages of AD are char-
acterized by a reduction in neuronal mitochondria and de-
creased brain metabolism of glucose [68, 69]. As reviewed
by Butterfield et al., analysis of autopsied AD brain tissues
also revealed decreased pyruvate dehydrogenase activity in
the parietal, temporal, and frontal cortex, as well as re-
duced activity of cytochrome c oxidase and mitochondrial
complex IV [70].
Gender may be an important modifying factor in the

development and progression of dementia, but gender
differences in neuropsychological functions are seldom
evaluated. Pusswald et al. assessed gender-specific differ-
ences in cognitive dysfunction between male and female
patients with mild to moderate AD, and they observed
that disruption of verbal learning in early-stage disease
was more pronounced in women than in men [71].
These data are in-line with an earlier meta-analysis of
neurocognitive data pooled from 15 independent studies
of AD patients (n = 828 men; 1238 women), which re-
vealed that male patients significantly outperform female
patients when tested for verbal and visuospatial ability
as well as recall of episodic and semantic memory [72].
Other researchers have also reported that females are more
vulnerable to dementia than males [73], and epidemio-
logical data indicate that AD is more prevalent in women
than in men [74], but the mechanistic basis of this gender
bias remains largely unknown. However, recent quantita-
tive analyses of brain protein expression in dementia pa-
tients have begun to shed light on this phenomenon. In
proteomic study of frontal cortex tissues from AD patients,
Muller et al. observed that disease-associated up-regulation
of heat shock 70 kDa protein 1B and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) is gender dependent
[75]. Similarly, data from our own laboratory have revealed
significant modulation of several redox proteins in the
temporal lobe of Alzheimer’s disease with cerebrovascular
diseases (AD-CVD) patients as well as sex-specific alter-
ations in the white matter and mitochondrial proteome of
female patients [55]. Proteomics findings of up-regulation
of myelin proteolipid protein (PLP) and their enrichment
in the temporal lobe of female AD-CVD was further
validated by western blot techniques [55]. Proteomic
analysis of AD-CVD brain tissues suggested that myelin
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Table 1 Summary of proteomics and chromatography techniques used in quantitative and qualitative proteomics

Technique Details Application Strengths Limitations

iTRAQ Isobaric tags for relative and
absolute quantitation

• Protein quantification through
incorporation of stable isotopes

• Isobaric tagging of peptides

• Multiplex several samples
• Relative quantification
• High-throughput

• Increases sample complexity
• Require fractionation of peptides
before MS

SILAC Stable isotope labeling with
amino acids in cell culture

• SILAC relies on metabolic incorporation
of a given ‘light’ or ‘heavy’ form of the
amino acid into the proteins,

• Direct isotope labeling of cells
Differential expression pattern

• Degree of labeling is significantly high
• Quantitation is straightforward

• SILAC labeling of tissue samples is
not possible

ICAT Isotope-coded affinity tag • Chemical isotope labeling for
quantitative proteomics

Sensitive and reproducible Detect peptides
with low expression levels

• Proteins without cysteine residues
and acidic proteins are not detected

TMT Tandem Mass Tag • Protein quantification through
incorporation of stable isotopes

• Isobaric tagging of peptides

• Identification and quantitation of proteins in
different samples

• Relative quantification
• Targeted quantitation strategies like SRM
• High-throughput

• Increases sample complexity
• Require fractionation of peptides
before MS

HILIC Hydrophilic Interaction
Liquid Chromatography

• Analysis of charged substances
• Separating polar proteins\peptides
• Separation and quantitative analysis
of modified and unmodified peptides

• The altered charge-state and hydrophilicities
of the DPM-modified peptides make it
possible to distinguish these from their
unmodified counterparts via LC-MS/MS

• Longer column equilibration time,
• Less reproducible retention times,
• Higher cost of mobile phase

emHILIC Electrostatic-interaction Modified
HILIC hydrophilic interaction liquid
chromatography

• Separation and quantitative analysis
of modified peptides

• Efficient separation of modified
peptides from unmodified via LC-MS/MS

• Some peptides may not dissolve well in high
organic solvent (90%ACN)

ERLIC using
WAX or SAX

Electrostatic-Repulsion Hydrophilic
Interaction chromatography

• Separation of isoforms of peptides and
proteins based on pI and hyrophobicities.

• Study protein DPMs/PTMs to inferior their
biological functions based on
quantitation

• Quantitation of isoforms of peptides and
proteins, e.g. the trios of deamidation
products.

• Some peptides may not dissolve
well in high organic solvent (90%ACN)

• ERLIC chromatographic resolution is
lower than C18 RP column.

LERIC-MS/
MS

Long-length Column Electrostatic-
Repulsion Hydrophilic Interaction
chromatography coupled to
tandem MS

• Study global protein DPMs/PTMs in
whole complex proteomes like brain
tissue lysate or cell lysate.

• Record the whole proteome in complex
sample in a single LC-MS/MS data file for global
DPMs/PTMs analysis.

• Some peptides may not dissolve
well in high organic solvent (90%ACN).

• ERLIC chromatographic resolution is
lower than C18 RP column.
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basic protein (MBP) exhibited hyper-citrullination of
arginine and deamidation of glutamine only in female
patients (Fig. 4). These data are consistent with reports
that down-regulation of cathepsin D and other enzymes
that degrade damaged brain proteins can enhance
citrullination of MBP, leading to axonal dysregulation
and progressive loss of neuron function [76].

Mass spectrometry based proteomic insight into hypoxia/
ischemia-induced neuropathies
Decreased cerebral blood flow has been correlated with
the symptoms of dementia in both MCI and early-phase
AD [77]. In the affected tissues, decreased blood flow trig-
gers cellular hypoxia, which has been implicated in the
pathogenesis of AD [78]. Unbiased proteomic analysis has

Fig. 3 Proposed roles of amyloid precursor protein, specific gene mutations, and various DPMs in human neurodegeneration and dementia

Fig. 4 Citrullination of arginine and deamidation of glutamine in myelin basic protein from female patients with AD-CVD (adapted from
Gallart-Palau et al. [55])
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provided novel insight into the molecular pathology of
hypoxic-ischemic brain injury, and confirmed that low-
oxygen conditions can induce mitochondrial dysfunction
and cellular stress as well as pathological epigenetic
changes and dysregulated proteostasis [45, 47, 51, 79, 80].
Oxygen restriction has also been observed to induce
specific pathological changes in neuronal cell lines [79],
rodent models of cardiovascular disease and cerebral ar-
tery occlusion [80, 81], and in brain samples from de-
mentia patients [45, 47, 51], suggesting a likely
central role for hypoxia-triggered pathways in driving
progressive tissue damage and corresponding cogni-
tive decline. For example, a previous proteomic study
of ischemic neuronal injury identified significant dys-
regulation of proteins including PARK7 and VAP-A
that have already been implicated in the pathology of
chronic neurological disorders such as AD and PD
[79]. Similarly, when an iTRAQ proteomic approach
was used to assess the neuronal cell response to hypoxia
and glucose depletion stress in a hypoxic-ischemic
penumbra model, the authors detected substantial
dysregulation of multiple housekeeping proteins, as well
as mediators of anti-oxidative defence, chaperone
functions, and protein metabolic pathways [79]. Further,
these authors adopted functional and cytometric as-
says, as well as western blotting technique to validate
their iTRAQ-quntitative proteomics findings. Proteomic
methods have also been used to uncover the molecular
basis of progression from hypoxia-ischemia brain injury to
overt clinical dementia, which is associated with dysregu-
lation of energy metabolism, mitochondrial dysfunction,
neuro-inflammation, and synaptic failure [45–47, 82].
Consistent with these data, other reports have observed
decreased activity of α-ketoglutarate dehydrogenase and
impaired operation of the Krebs cycle in AD brain [83,
84]. The role of hypoxia and impact of neurotransmitter
γ-aminobutyric acid (GABA) shunting in the pathogenesis
of AD has recently been reviewed by Salminen et al. [83].
Taken together, these data strongly support the concept
that neurodegeneration is caused by a successive cycles of
hypoxic-ischemic brain injury which induce detrimental
DPMs that promote protein misfolding and aggregation,
leading to cognitive decline and eventual dementia. While
the molecular events that drive early subclinical proteino-
pathy in the brain remain poorly understood, a likely key
mediator is the hypoxia-inducible transcription factor HIF,
which potently modulates cellular gene expression upon
stabilization under low-oxygen conditions. Following recent
technological advances, it will now be possible to determine
the exact role played by HIF and other potential mediators
of human proteinopathies using unbiased, global, discovery-
driven proteomic approaches. Our group and other re-
searchers therefore optimized the use of proteomic tech-
niques for the systematic analysis of hypoxia effects on

neuronal cell lines, animal models of ischemic brain injury,
human blood plasma samples, and post-mortem brain tis-
sue samples from patients affected by dementia or stroke
[79–82, 85–89]. Using this approach, researchers have
achieved good progress in understanding how protein
DPMs and aggregation induced by hypoxic-ischemic brain
injury can promote neurodegeneration in dementia [90–92].

Degenerative protein modifications and their impact in
dementia
DPMs critically regulate a wide range of homeostatic
and pathological processes by modulating protein activity,
charge, hydrophobicity, stability, specificity, transport, and
longevity in human cells [93, 94]. By combining chroma-
tography with mass spectrometry, it is now possible to
conduct robust identification and characterization of novel
DPMs using proteomics platforms, which offer high
sensitivity of detection, accurate assignment of structural
modifications, and robust quantification of changes in
DPM-bearing amino acids at specific locations [47, 48, 95].
When applied to the analysis of DPMs in complex bio-
logical samples, proteomic approaches provide unparallel
power to assess the molecular basis of ‘proteinopathies’
such as dementia. Consequently, we now recognize that
DPMs can promote pathological progression in human de-
mentia by radically altering protein structure and function
in the brain [45, 55]. There are several major types of DPM
known to occur in human cells; deamidation, phosphoryl-
ation, nitrosylation, glycosylation, racemization, glycation,
and hydroxylation, although these are not the only known
modes of modification. While some DPMs are catalyzed by
enzymes, this review focuses on the spontaneous (non-en-
zymatic) modifications such as deamidation, oxidation, ni-
tration, carbamylation and glycation; which are recently
identified as being key mediators of brain proteinopathy in
dementia.

Protein deamidation in dementia disorders
Cellular degradation of modified proteins is required to
avoid the accumulation of altered/non-functional mole-
cules and protect against neurodegeneration and demen-
tia. Conversely, increasingly prevalence of specific DPMs
in the brain may serve as useful biomarkers of disease,
such as elevated tissue levels of hyper-phosphorylated
Tau, which has previously been used in the diagnosis of
dementia [96]. While multiple types of DPMs are now
known to promote protein misfolding, aggregation and
accumulation in the brain, the initiating factors and
mechanisms that mediate these DPMs remain poorly
understood, primarily due to the technical challenges as-
sociated with their study. To define the role of specific
DPMs, it is first necessary to perform accurate identifica-
tion of protein modification sites, while avoiding introduc-
tion of artificial modifications during sample preparation.
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Processing proteomic samples at a mild alkaline pH to-
gether with prolonged trypsin digestion at 37 °C are major
causes of non-enzymatic Asn-deamidation, but use of an
alternative protocol in which trypsin digestion is con-
ducted in 50 mM ammonium acetate (pH 6) can mitigate
artifactual deamidation, improve sensitivity, and increase
confidence of identifying low abundance DPMs [48, 52].
Recovery of low-abundance peptides can also be further
improved via the use of sodium deoxycholate (SDC) with
an ammonium acetate-based buffer (pH 6.5) which has
been shown to increase protein solubility and enhance
trypsin activity during the processing of complex bio-
logical samples [97]. By avoiding the use of urea and
employing mildly acidic conditions, this approach was
able to limit artificial asparagine deamidation and pre-
vented artifactual carbamylation [97].
Under physiological conditions, deamidation of the

protein residues asparagine (Asn) and glutamine (Gln)
can occur spontaneously and progressively alter protein
structure, function, and stability over time [98]. Asn dea-
midation occurs through the formation of a succinimide
ring intermediate, which is quickly hydrolyzed to D,L-Asp
and D,L-isoAsp (with isoAsp predominating). Due to the
less favorable thermodynamics of forming a six-member
glutarimide ring, deamidation of Asn occurs relatively fre-
quently whereas Gln deamidation occurs more slowly.
Deamidation increases peptide mass by just 0.984 Da, and
the hydrophobic properties of the resultant Asp- and
isoAsp-containing variants are extremely similar, hence it
is challenging to resolve these using conventional MS-
based techniques. However, by developing an improved
ERLIC-LC-MS/MS methodology, it has recently become
possible to distinguish isoAsp-containing peptides from
their n-Asp-containing counterparts prior to identifica-
tion. While protein deamidation can serves as a versatile
molecular clock that regulates many normal cellular pro-
cesses, excess DPM accumulation in long-lived proteins
can eventually lead to age-related decline in biological
function [48]. For example, deamidation has previously
been linked with progressive alterations in the structure of
human cortical neurons, as well as the accumulation of α-
synuclein protein in patients with PD, AD, multiple sys-
tem atrophy (MSA), or dementia with Lewy bodies (DLB)
[99]. Increased levels of isoAsp have also been detected in
AD brain compared with healthy subjects, and are
enriched in Aβ peptides isolated from amyloid plaques
[100]. Excessive deposition of isoAsp residues has also
been identified in synapsin 1 and tubulin proteins in VaD
patients [51], strongly suggesting that deamidation impairs
synapse protein function early in dementia pathogenesis.
The ion channel protein Na+–K+ ATPase exhibits mul-

tiple functions including the maintenance of differential
membrane potential in neurons, which is an essential
feature of signal transduction processes. Dysregulation

of Na+–K+ ATPase expression or function have been
reported in both animal models and human brain tissues
affected by AD, PD, or HD [46, 79, 81, 82]. In a previous
study of human brain tissues from patients with VaD,
Adav et al. observed deamidation of Na+–K+ ATPase sub-
units in evolutionary conserved regions of the protein
(Fig. 5a, b) [45]. Using a structural modelling approach,
they then located the specific modification sites and pro-
posed that disruption of Mg2+ and Cu2+ binding impaired
electrostatic interactions and inhibited the function of
ion channel proteins in VaD. Modification of Na+–K+

ATPase residues 210 and 220 has been proposed to
cause defects in protein phosphorylation and dephos-
phorylation mechanisms, potentially leading to altered
ATP hydrolysis in the brain [45, 101, 102], and ATP
synthase α-chain was previously reported to accumu-
late in the cytosol in early stages of neurofibrilliary
degeneration in AD [103]. Deamidation-induced changes
in Na+–K+ ATPase subunits may therefore lead to defects
in membrane excitability and neuronal function.
Moreover, the protein ‘L-isoaspartate (D-aspartate) O-
methyltransferase’(PIMT) functions as a repair en-
zyme that can recognize abnormal isoAsp residues
and restore them to the unmodified L-Asp form, thus
allowing deamidation to be reversed. However, a pre-
vious proteomic analysis of VaD brain tissues revealed
that PIMT is also deamidated in this condition, likely
resulting in reduced capacity to mediate repair of isoAsp
residues [45]. In mammalian cells and mouse models that
lack PIMT, isoAsp accumulation causes hyperactivation of
key cell signaling pathways, decreases animal growth, and
can even induce fatal seizures [104].
During a previous study of dementia-linked amyloidosis,

analysis of the pelleted insoluble aggregate revealed
extensive deamidation of brain proteins including S100A9,
ferritin, hemoglobin, creatine kinase (U-type), S100-B,
collagen α-2(IV) chain, collagen α-2(I) chain, laminin sub-
unit β-2, dystonin (isoform 3), and serine/threonine-pro-
tein kinase (isoform 2) [53]. These authors also observed
disease-associated deamidation of the proteins coronin-
1A and syntaxin-binding protein 2, which have previously
been implicated in neurodegeneration in the hippocam-
pus. Since deamidation introduces a negative charge that
promotes protein aggregation, the multiple deamidated
residues of S100A9 (Fig. 5c and d) suggest a propensity to
modify charge state and form pathological aggregates in
the brain. Similarly, loss of synapses is a major contributor
to the cognitive impairments that is manifested in VaD,
and temporal cortices from affected patients exhibit up-
regulation of the synaptic protein SNAP25 (synaptosomal-
associated protein 25) [47], as well as significant accumu-
lation of deamidated asparagine and glutamine residues in
nerve terminal protein synapsin 1 compared with age-
matched controls [51]. When assessed using structural
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models, the location of the modification site predicted that
deamidation would induce detrimental changes in the
conformation of synapsin 1. Accurate identification of
DPMs and the affected modification sites will therefore be
critical to understanding their influence on protein biology
in human dementia. Efforts have therefore been made to
develop a comprehensive approach to the accurate identi-
fication of protein DPMs in the brain, including method
optimization for biomedical and clinical applications [45,
47, 48, 51–53, 56].

Protein oxidation in dementia disorders
Protein oxidation is thought to represent the primary
mode of molecular aging since this modification not
only directly damages the target protein, but also gener-
ates additional reactive metabolites that promote further
oxidation of cellular proteins, lipids, and nucleic acids.
Under physiological conditions, healthy cells and tissues
maintain a balance between pro- and anti-oxidative me-
diators, but in disease settings this balance gets dis-
rupted and permit increased production of reactive
nitrogen species (RNS), formation of advanced glycation
end product (AGEs), and generation of reactive oxygen
species (ROS) including superoxide anions (O2

•-) and hy-
droxyl radicals (OH•). Various physiological processes
can also produce singlet oxygen and hydrogen peroxide
(H2O2) which destabilize lysine and histidine residues,
promote cysteine conversion into disulfides, and en-
hance the formation of methionine sulfoxides. The re-
sultant oxidative stress can impair vital cellular

processes, signalling events, and metabolic pathways,
thereby contributing to the pathogenesis of multiple
neurodegenerative disorders [105–107]. Oxidated pro-
teins may also exhibit altered sensitivity to proteolytic
degradation and increased tendency to form insoluble
aggregates in the brain. Accordingly, oxidative protein
damage has already been implicated in the pathogenesis
of AD, PD, Huntington’s disease (HD), DLB, and ALS
[108, 109].
Oxidative damage has previously been linked with pro-

tein loss-of-function in the hippocampus, which is
strongly associated with memory impairment and cogni-
tive dysfunction in dementia [108, 110, 111]. While mul-
tiple proteins are known to be subject to oxidative
modification in AD brain tissues (including enolase, TPI,
PGM1, CK, LDH, GAPDH, aconitase, aldolase, VDAC,
and ATP synthase [108, 112–114]) a previous region-
specific analysis by Sultana et al. determined that the
hippocampus was specifically enriched in oxidated vari-
ants of ubiquitin carboxy-terminal hydrolase L-1 (UCH
L-1), peptidyl prolyl cis–trans isomerase, phosphoglycer-
ate mutase 1, dihydropyrimidinase-related protein2, car-
bonic anhydrase II, triose phosphate isomerase, α-
enolase, and γ-SNAP [108]. These data are consistent
with reports that brain protein oxidation preferentially
occurs in Aβ-rich regions including inferior parietal lobe
(IPL), cortex, and hippocampus, but not in the cerebel-
lum which typically contains only trace levels of Aβ
[110]. In-line with these findings, other authors have
used proteomics-coupled 2D fingerprinting with

Fig. 5 Structural models of the Na+/K+-ATPase catalytic site in (a) E1P and (b) E2P conformations (PDB ID 4HQJ and 2ZXE respectively). In both
a and b, color-codingshows in blue: the amino-terminal; red: carboxyl-terminal, blue and cyan: A domain; yellow: P domain; green: N domain.
Deamidated residues N210, D220 and N715 are highlighted in red. Magnesium ions are represented in magenta. (Adapted from Adav et al. [45]).
c Structural model of deamidation sitesin protein S100A9 (RCSB Protein Data Bank accession code: 1XK4). The EF hand calcium binding motifs are
shown in yellow and deamidation sites are highlighted in magenta and blue. d EF hands and deamidation sites (adapted from Adav et al. [53])
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immunological detection of carbonyls to confirm that
IPL tissues from AD patients are enriched in oxidated
proteins that play crucial roles in energy production,
axonal growth, pH regulation, vesicular transport and
protein degradation [108, 109, 113, 115]. The oxidated
proteins included CKBB, which plays a major role in the
production of high-energy phosphate for ATP synthesis,
the ubiquitin-proteasome component UCH L-1, and the
glutamate-glutamine cycle regulator GS which maintains
the balance of neurotransmitters in the brain. Accord-
ingly, oxidative modification of these proteins in AD pa-
tients has been reported to disrupt energy generation in
brain tissues, impair synaptic function, and induce
excitotoxicity-mediated neuronal cell death and conse-
quent memory loss [113, 116–118].
Given that glucose is the primary energy source used

in the brain [119], disruption of glycolytic metabolism,
in particular, can exert profound effects on cognitive
function. Several components of the glycolysis pathway
may exhibit oxidation-related functional impairment in
dementia, including enolase, TPI, PGM1, LDH, GAPDH
[110, 112–114]. The corresponding deficiency in energy
production not only disrupts normal synaptic functions,
but also impairs ion motive ATPases, induces choliner-
gic defects, disturbs cholesterol homeostasis, and modu-
lates protein synthesis and signal transduction pathways.
Collectively, these effects can severely impact neuronal
cell survival and memory functions, leading to progres-
sive cognitive decline [109]. Inefficient neurotransmis-
sion has also been linked with oxidation of key proteins
involved in production of the critical neurotransmitter
acetylcholine (e.g. RAF kinase inhibitor, phosphatidyleth-
anolamine binding protein, hippocampal cholinergic
neurostimulating protein) [120]. Other detrimental ef-
fects of oxidation have been identified among brain cell
structural proteins including β-actin, dihydroxypyrimi-
dine related protein-2, and α-tubulin, with modification
of these molecules being linked to a decline in interneur-
onal connectivity, impaired axonal transportation, and
loss of structural integrity leading to neuronal cell death
and AD-like pathology [121–123].

Protein nitration in dementia and AD pathogenesis
While several mechanisms have already been proposed
to trigger AD pathogenesis in brain tissues, it remains
unclear what factors first cause loss of synaptic connec-
tions and memory loss in human patients. Brain tissue
accumulation of amyloidal plaques, Tau, presenilin, apo-
lipoprotein, and plasmin appear to be key contributors
to disease development, but accumulating evidence in-
creasingly points towards oxidative stress as a key initi-
ator of AD pathogenesis [70, 105, 106, 117, 121, 124]. It
is important to note that the effects of oxidative stress
are not limited to proteins alone and can further modify

cellular function via oxidation of other biomolecules,
formation of advanced glycation end products, and gen-
eration of ROS/RNS. For example, while nitric oxide
(•NO) can serve as a neurotransmitter and signaling
molecule in healthy tissues, excess generation of •NO in-
stead favors the formation of reactive peroxynitrite and
nitrogen dioxide species that can mediate nitration of
brain proteins [125]. Protein nitration involves the for-
mation of NO2-Tyr motif that confers a characteristic
mass increase of 45 Da, and has previously been re-
ported to enhance Aβ aggregation in a rodent model of
AD [125]. By mediating tyrosine nitration at the ortho-
position, peroxynitrite modification of proteins can block
later phosphorylation events, thereby inducing protein
dysfunction and eventual cell death [126]. However,
these events may not be wholly pathological, since other
investigators have proposed that dynamic interplay be-
tween nitration and phosphorylation may be required
for some normal biological functions [127], and that
tyrosine nitration can contribute to neurite elongation
and differentiation of neuronal cell types [128]. While
peroxynitrite reacts directly with cysteine, methionine
and tryptophan, modification of tyrosine, phenylalanine
and histidine residues is instead driven by intermediary
secondary species [129]. For instance, reactive nitrogen
species formed by the combination of superoxide (O2•-)
and nitric oxide (NO•) radicals can promote the formation
of nitrothiols which inactivate mitochondrial enzymes and
further modify membrane and cytosolic proteins to dis-
rupt essential cellular functions [126, 130, 131].
Under normal physiological conditions, Tau is a na-

tively unfolded protein with high solubility, but in AD
brain tissues this protein undergoes modifications that
induce changes in conformation and reduce solubility.
Tau contains five tyrosine residues (located at 18, 29,
197, 310, and 394), that can undergo nitration to initiate
a range of ‘tauopathies’ [132]. In AD patients, Tau nitra-
tion occurs selectively at Y18 and Y29, and to lesser ex-
tent at Y197 and Y394 [133]. Tau nitration at Y197 and
Y18 has been reported to enhance disease progression in
a range of neurodegenerative disorders [134], whereas
nitration at Y29 appears to be a specific characteristic of
AD [133]. Similarly, the abundant neuronal protein α-
synuclein has been observed to form intracellular aggre-
gates in patients with AD, PD or various ‘synucleinopa-
thies’, perhaps as a consequence of protein nitration at
tyrosine residues Y39, Y125, Y133 and Y136. Using a
highly novel approach, Burai et al. assessed how site-
specific incorporation of 3-nitrotyrosine into different
regions of α-synuclein exerted diverse effects on protein
structure, function, oligomerization, and aggregation
[135]. The effects of protein nitration may therefore be
as diverse as the range of targets that can undergo this
modification. Indeed, the repertoire of proteins reported
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to be nitrated in AD has expanded to include many
critical mediators of essential cellular functions, such as
aldolases A and C, peroxiredoxin 2, neuropolypeptide
H3, glutamate dehydrogenase, phosphoglycerate mu-
tase1, TPI, and H+-transporting ATPase [114, 136, 137].
The AD hippocampus in particular also displays exten-
sive nitration of α-enolase, GAPDH, carbonic anhydrase
II, ATP synthase α-chain, and VDAC-1 [108]. As outlined
in the previous section on protein oxidation, any modifi-
cation that impairs glucose metabolism can potentially
exert major effects on normal brain functions, and accord-
ingly, nitration of ATP synthase α-chain and VDAC-1 are
strongly associated with mitochondrial dysfunction and
neuronal cell death in the hippocampus in AD.
While nitrated proteins are typically prone to proteo-

somal degradation, in AD patients this pathway may be
defective due to oxidation of key components such as
UCH L-1 in the hippocampus and IPL regions [114, 138].
Consequently, nitrated proteins may be able to escape
degradation and instead accumulate to pathological
levels in AD brain tissues. Indeed, elevated levels of
3-nitrotyrosine (NT) have been detected in neurons derived
from AD brain tissues, together with increased concentra-
tions of dityrosine and 3-nitrotyrosine in the hippocampus,
IPL, and neocortical regions [139, 140]. It is important to
note that when Su et al. examined NT levels in the visual
cortex of AD patients, the authors observed that brain
neurons can exhibit DNA damage in the absence of tangle
formation, strongly suggesting that oxidative damage is an
early event in the pathogenesis of AD [140].

Protein glycation in dementia disorders
Glycation is a non-enzymatic process initiated by the re-
action between a reducing sugar and the free amino
group of a target protein in Maillard reactions or glyco-
sylation events. The product of this reaction is known as
an Amadori-modified protein, which can subsequently
generate AGEs upon further modification by oxidation
and fragmentation. Maillard reactions primarily occur at
the ε-amino groups of lysine or at their free amino groups,
whereas glycation can also take place at the side chains of
arginine, histidine, tryptophan and cysteine residues [141].
Glycosylation is instead an enzyme-directed process that
attaches glycans to proteins, lipids, and other organic
molecules in a site-specific manner. Since this review
article is focused on spontaneous protein modifications,
the subsequent section will discuss only the non-enzymatic
pathway of advanced glycation.
AGEs alter protein charge and solubility, as well as in-

ducing conformational changes that promote the forma-
tion of insoluble protein deposits, increase oxidative
stress, and elicit inflammatory responses in the brain
[142, 143]. The proteins most vulnerable to AGE modifi-
cation are those with slow turnover rates, such as

fibronectin, collagen types III, IV, VI, laminin, and
crystalline [144, 145]. Other long-lived proteins such
as β-amyloidal plaque components are also suscep-
tible to AGE modification, and increased levels of
AGEs have been identified in tissues from patients
with AD [146, 147]. The effects of protein glycation
vary between target molecules, but a role in promot-
ing aggregation and dysfunction of Tau has been well
documented [148]. Tau is involved in stabilizing the
neuronal cytoskeleton by interacting with microtu-
bules, but glycation of this protein within the tubulin
binding motif has been proposed to disrupt this role
and impair neuronal functions [149, 150]. Tau exhibits six
different isomers in adult humans, and protein function is
critically regulated by the expression ratio and phosphor-
ylation state of these variants. Accordingly, an altered ratio
of Tau isomers has been linked with neurofibrillary path-
ology and neurodegeneration [151], and glycation of these
variants in AD promotes phosphorylation events that dis-
turb the normal isoform balance in the brain [148]. Tau
exhibits increased propensity to form aggregates upon gly-
cation or phosphorylation, which in turn promotes patho-
logical bundling of cytoskeletal polymers [152, 153]. As
well as being resistant to degradation, glycated proteins
are also highly susceptible to oxidation and support fur-
ther generation of damaging free radicals, leading to brain
tissue accumulation of these molecules and eventual neur-
onal cell death [150, 154–156].
AGE-modification accelerates the aggregation of sol-

uble Aβ proteins in vitro, and AGE adducts are enriched
at least 3-fold in plaque samples from AD brains com-
pared with age-matched controls [157, 158]. Brain en-
richment of AGEs may impair neural cell function by
promoting covalent cross-linking of cellular proteins,
thereby impeding their normal activities, or alternatively
by direct signalling through the receptor for AGE
(RAGE) [159]. Aβ has previously been identified as a
ligand for RAGE, and upregulation of RAGE has been
reported to mediate Aβ-induced oxidative stress, acti-
vate NF-kB, promote neuronal expression of macro-
phage colony-stimulating factor, and induce neuronal
dysfunction [160, 161]. A previous study by Fang et al. also
observed that RAGE signalling in microglia elicits an
inflammatory response that impairs neuronal function
and directly influences amyloid accumulation [162]. As
well as inducing expression of pro-inflammatory cyto-
kines, AGEs have also proposed to contribute to the
development of VaD [163], thus suggesting a critical
role for this modification in pathological cognitive de-
cline. However, AGE-induced cross-linking and de-
naturation of cellular proteins may also represent part
of the normal aging process [164], hence further study
will be required to distinguish pathological events from
natural processes.
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Protein carbamylation in dementia disorder
Carbamylation, a nonenzymatic DPM mediated by
binding of cyanate derived from urea dissociation or
myeloperoxidase-mediated catabolism of thiocyanate
to free amino groups of proteins, impair function of
protein and thought to promote vascular dysfunction
during end-stage renal disease [165, 166]. Carbamylation
may result in changes in the properties of the proteins,
ranging from complete loss of biological activity to minor
conformational effects and even increase in activity. In
1970s, Crist et al. [167], noted a dose-based decline in
learning ability when rats were injected with 50, 100 and
150 pmol cyanate per day, while in vivo and in vitro evi-
dences of brain protein carbamylation by cyanate was doc-
umented by Fando and Grisolia [168]. Recently, it’s been
documented that carbamylation promotes molecular
aging through alteration of protein functions, especially
long-lived extracellular matrix proteins [169]. But, recent
literature on protein carbamylation in dementia and AD
disorder is very limited, may be due to technical chal-
lenges like firstly, urea used as a denaturant for sample
preparation induces artifactual carbamylation, and sec-
ondly, a mass shift of +43 Da (carbamylation) is difficult
to distinguish from +42 Da (trimethylation or acetylation),
and apparently real identifications of carbamylation could
potentially be artifactual [170]. However, upon kidney
function decline, the urea accumulates elevating the bur-
den of carbamylation. After proposing the carbamylation
of erythropoietin (CEPO) for removing its erythropoietic
effects, several researchers [171–174] carried out prelim-
inary experiments signifying the neuroprotective effects of
CEPO in a wide range of animal models of neurotoxicity
including ischemic stroke, sciatic nerve compression,
spinal cord depression, and peripheral diabetic neuropathy
and proposed CEPO as a potentially important pharmaco-
logical agent for the treatment of neuropsychological dis-
orders, neuronal function and chronic neuronal disorders
including AD, PD, HD, amyotropic lateral sclerosis, mul-
tiple sclerosis, Creutzfeldt–Jakob disease, Charcot–Marie
Tooth Disease, ataxias, seizure disorders, stroke, brain or
spinal cord trauma [171, 173, 175]. The major structural
proteins of the eye lens called α-crystallin functions like a
chaperone and plays a decisive role in the maintenance of
eye lens transparency, however, in vitro carbamylation of
the α-crystallin through a high-molecular-weight aggre-
gates formation causes loss of its chaperone activity [176].

Degenerative protein modifications and its validation
In DPMs validation, the commercial specific antibodies
for quantifying DMPs are very limited. Proteomics tech-
nique like multiple reactions monitoring (MRM) can be
used for validation of DPMs, however, instruments with
low resolution (i.e. <2000 resolution) cannot differentiate
deamidated and unmodified peptides [52]. High resolution

(70,000–140,000) instrument like Q-Exactive can theoret-
ically differentiate deamidated and unmodified ions [177].
When triple quadrupole mass spectrometers collects pre-
cursor and product ions for validation of deamidated pep-
tides, the 13C peaks of their undeamidated counterparts
are also collected by the commonly used isolation width
of 0.7 Th [48]. Thus, it’s not possible to validate DPMs like
deamidation. Since DPMs occurs spontaneously either in
vivo or in vitro, and produces a mixture of both modified
and unmodified products, the potential to differentiate be-
tween them using high-resolution PRM remains critical
for the accurate quantification of protein modifications in
biological systems. Thus, although proteomics technology
is well developed for identification of DPMs but still re-
cent advances cannot help to validate it and needs much
more efforts to develop required methods. The biological
functions of spontaneous DPMs is not easy to validate in
vitro or in vivo. For example, oxidative damaged proteins
are proposed and known to induce natural aging and de-
generative diseases for decades, but direct proof of their
biological functions are not possible. Intriguingly, protein
N-deamidation can be promoted by microenvironmental
factors such pH and oxidative stress [178], as well as pro-
tein interactions with other molecules and spontaneous
mutations that alter protein sequence [179–181]. Al-
though N-deamidation is a spontaneous process, host cells
employ a repair mechanism that prevents the excessive ac-
cumulation of deamidated residues in proteins. This repair
mechanism is mediated by the enzyme L-isoaspartyl (D-
aspartyl) methyltransferase (PIMT) [19], which is most
highly expressed in mammalian brain tissues [182], and
exhibits decreasing activity in aging mice [183]. Accord-
ingly, PIMT-deficient mice suffer neuropathology and fatal
epileptic seizures at 30-60 days after birth [184, 185].
These experiments using transgenic animal models clearly
demonstrated that spontaneous degenerative protein N-
deamidation and the action of its repairing PIMT critically
influence the structure and function of key proteins in the
central nervous system.

Evaluating protein expression and specific DPMs as
potential biomarkers of dementia
The early diagnosis of dementia and development of
effective new drug therapies will depend on the identifica-
tion of robust biomarkers of disease pathology. However,
previous efforts to uncover clinically useful prognostic/
diagnostic biomarkers in dementia have been restricted by
an incomplete understanding of the mechanisms under-
pinning disease pathogenesis. Earlier attempts to identify
disease biomarkers have primarily been guided by the
‘amyloid hypothesis’ or Tau-based models of dementia
pathogenesis, hence these have largely focused on the
components of extracellular amyloid plaques, intraneuro-
nal NFT, and on Tau isoforms in the brain. Given that
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sampling of human brain tissues is poorly suited to rou-
tine clinical testing, many biomarker studies have instead
focused their analyses on CSF, which benefits from close
proximity to the brain extracellular space and is known to
reflect biochemical and molecular changes that occur
within the brain parenchyma. Accordingly, the most clin-
ically useful biomarkers identified to date are CSF levels of
Aβ1–42, total Tau protein, and phospho-Tau-181, which
are significantly elevated in AD [186, 187], but are unable
to differentiate other forms of dementia. Other proposed
biomarkers of AD have included CSF accumulation of
proteins such as phospholipase A2, visinin-like 1, and vari-
ous neurofilament components (recently reviewed by Liu
et al. [188]). Another possible biomarker of AD pathogen-
esis is increased generation of the CSF component acid
2,4-dihydroxybutyrate, which has previously been shown
to correlate with the progression of MCI [83, 189].
However, a more promising approach might be the devel-
opment of complex panels of multiple biomarkers that
can provide a more detailed picture of pathological events
occurring in the brain. Indeed, in a recent study of human
CSF samples, Shi et al. used a targeted approach to
develop a biomarker profile capable of distinguishing
patients with PD and AD by detecting dysregulated
levels of macrophage colony-stimulating factor 1 receptor,
osteopontin (SPP1), pro-low-density lipoprotein receptor-
related protein 1, ephrin type-A receptor 4, and metallo-
proteinase inhibitor 1 [190].
Brain synapses play major roles in neuronal communi-

cation and their dysfunction is associated with cognitive
disturbance in early AD. Given that synaptic dysfunction
is thought to occur prior to neuronal cell degeneration
and death, it is possible that proteins expressed in synap-
ses could serve as very early biomarkers of disease
pathogenesis. A promising candidate is neurogranin pro-
tein which participates in synaptic signaling events via
the regulation of calmodulin availability and is also
known to be involved in long-term potentiation and
memory consolidation [191]. Neurogranin is abundantly
expressed in the cerebral cortex, hippocampus, amyg-
dala, and striatum, and elevated levels of this protein in
CSF predict AD progression and rapid cognitive deteri-
oration [192]. The presynaptic protein SNAP25 has also
been detected at significantly increased levels in CSF
from AD patients [193]. However, CSF collection by
lumbar puncture remains an invasive method with high
risk and significant side effects, hence there is a clear
unmet need for more readily accessible biomarkers in
other body fluids that are better suited to longitudinal
analyses of individual patients over an extended period.
The biological fluids most easily sampled in clinical

settings are blood and urine, hence mass spectrometry-
based proteomics has been widely used in previous
attempts to identify blood biomarkers of dementia [194].

An altered ratio of Aβ42:Aβ40 in plasma [195], and in-
creased serum levels of proteins including ApoE [196],
clusterin [197], α-1-antichymotrypsin [198], and cyto-
kines IL-1α and IL-6 [199] have been proposed, but the
clinical utility of these for differentiating dementia sub-
types and disease stages has not been established, and
concerns over the sensitivity and specificity of these pu-
tative biomarkers remain unresolved. Indeed, an increase
in circulating levels of Aβ has been reported in familial
AD and Down syndrome, this finding was not replicated
in sporadic AD, and plasma levels of Aβ1–42 and Aβ1–40
have been variably reported as either elevated or re-
duced, or even unchanged in AD patients compared
with controls [200, 201]. These findings suggest that
blood concentration of Aβ is unlikely to represent a ro-
bust biomarker for clinical applications. Similarly, while
Ray et al. [202] were able to identify a panel of 18 signaling
proteins that achieved almost 90 % accuracy in identifying
MCI patients that later progressed to AD, this strategy
later failed cross-validation on an independent assay plat-
form. Several other researchers have also attempted to
identify AD patients by assessing plasma levels of sero-
tonin, phenylalanine, proline, lysine, phosphatidylcholine,
taurine and acylcarnitine; metabolites including phospati-
dylinositol, proline-asparagine dipeptide, acylcarnitines,
malic acid, lysophophatidylcholine, and glycoursodeoxy-
cholic acid: and various combinations of circulating pro-
teins, lipids, metabolites and other blood biomolecules
[203, 204]. While encouraging early data have been gener-
ated by combinations of lipidomic, proteomic and meta-
bolomic approaches, the results from these studies have
so far not been replicated in independent clinical cohorts
and will require further investigation [205].
Increased protein damage by DPMs like glycation,

oxidation and nitration has been implicated in neuronal
cell death leading to AD. Ahmed et al. [206] measured
glycation, oxidation and a nitration adduct in CSF samples
of AD and age-matched control and found increased
concentration of 3-nitrotyrosine, Ne-carboxymethyl-lysine,
3-deoxyglucosone-derived hydroimidazolone and N-
formylkynurenine residues. Although protein nitration,
oxidation and glycation adducts in CSF have been
proposed as a biomarker, the variables linked to these
modifications may also be useful indictors for the
diagnosis of AD. Pentosidine, an advanced glycation
end product could be an important factor useful for
the diagnosis of AD [207]. Conrad et al. [208] found
significant elevation of total oxidized plasma proteins
in AD subjects when compared with non-AD controls
and suggested that such oxidized proteins may be
useful as biomarkers for the detection and evaluation
of AD. However, their study focused on total oxidized
proteins and not attempted to identify individual pro-
teins. Oxidized β-amyloid in CSF has been proposed
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to be a biomarker to differential subjects with Lewy
body dementia from patients with PD dementia [209],
while oxidized plasma fibrinogen γ-chain precursor
proteins and α-1-antitrypsin [210] were relevant to
diagnosis of AD. Several studies have found increased
oxidizablility of CSF\plasma derived lipoproteins and
APOA-I [211, 212].

Exosomes as novel biomarkers of neurodegenerative
diseases
Although blood is a rich source of potential disease bio-
markers, detecting rare circulating proteins against a
high background of extremely abundant proteins such as
albumin can be very challenging. Accordingly, efforts are
underway to develop methodologies that can remove
highly abundant proteins from blood without depleting
disease-relevant molecules with potential clinical utility.
However, an alternative strategy for identifying blood
biomarkers of dementia could be to move away from
analysis of soluble proteins to assessing the contents of
circulating extracellular vesicles (EVs). EVs include a
wide range of structures derived from the plasma mem-
brane or endosomal origins. These vesicles are released
by almost all cell types and play major roles in many
critical biological processes (including intercellular com-
munication, myelination, synaptic plasticity, antigen
presentation, trophic support of neurons, tissue repair,
immune surveillance, and blood coagulation) [213–217].
EVs are released under both normal and pathological
conditions, and have been detected in body fluids as di-
verse as saliva, breast milk, amniotic fluid, hydrothoracic
fluid, and ascitic fluid [218]. While these vesicles are
only 30–50 nm in diameter, they contain a complex
cargo of proteins, lipids, and various RNA species de-
rived from the host cell of origin [219]. Consequently,
EVs are laden with biomolecules that reflect patho-
physiological conditions in the tissue from which they
were originally released, and are therefore regarded as
an extremely promising source of circulating biomarkers
for use in clinical diagnostics. Due to their small size
and low density, EVs (including exosomes) have typically
been isolated for study via differential ultracentrifuga-
tion. However, Gallart-Palau et al. [220, 221] recently re-
ported a novel method of enriching EVs from human
plasma and brain tissues via Protein Organic Solvent
PRecipitation (PROSPR), which could significantly accel-
erate progress in this field.
The clinical potential of assessing EV cargo is well sup-

ported by previous reports that exosomes derived from
the brain and CSF of AD patients are enriched in Aβ
peptides and phosphorylated Tau [222, 223]. In addition,
exosomal transfer of α-synuclein protein has been pro-
posed to contribute to the pathogenesis of PD, and these
vesicles may also be involved in the dissemination of

prion proteins by ‘infected’ neuronal cells [224, 225].
The trafficking of macromolecules from the central ner-
vous system (CNS) to the CSF and blood can also be
mediated by EVs [219], and CNS-derived vesicles have
been successfully detected in both CSF and blood serum
[226]. The studies conducted to date have already identi-
fied that exosomes are laden with numerous proteins
that are associated with neurodegenerative pathology, in-
cluding APOE, Aβ peptides, α-synuclein, prion, and
neurogenic locus notch homolog protein 3 (NOTCH3)
[88, 225, 227–229]. Accordingly, exosomes enriched in
Aβ and α-synuclein has been reported to impair neur-
onal cell survival and potentially contribute to the
pathogenesis of AD [227]. It is important to note that
the clinical potential of exploiting EV biology is not re-
stricted to dementia alone. For example, serum exosomes
from glioblastoma patients have been shown to contain
glioblastoma-specific epidermal growth factor receptor vIII
(EGFRvIII) which promotes tumor growth and may repre-
sent a useful diagnostic biomarker of glioblastoma [230].
Other investigators have also reported that tumor cells se-
crete vesicles that can modulate the microenvironment to
facilitate angiogenesis and metastasis [231]. Indeed, the
clinical exploitation of exosome biology may also yield sig-
nificant advances in prognostic testing of patients with
melanoma, ovarian cancer, bladder cancer, prostate cancer,
kidney injury or liver damage [230, 232–234].

Future outlook
Dementia is now a global public health priority and will
require urgent action to address at both healthcare and
societal levels. Defining the molecular mechanisms
underlying dementia pathology will be key to developing
an effective cure, but this is unlikely to be achieved using
classical biological methods that focus only on the role of
a select few genes in disease pathogenesis. Researchers
now appreciate that neurodegenerative disorders arise
from complex interactions between a wide ranges of pro-
teins, and that advanced proteomics technologies will be
required to identify and quantify disease-related protein
profiles with prognostic value for use in the clinic. As out-
lined in this review, unbiased, global, discovery-driven ap-
proaches such as proteomics are well-suited to uncovering
the complex molecular pathology of human proteinopa-
thies such as dementia. State-of-the art quantitative prote-
omics techniques are now capable of accurately profiling
the human brain proteome and dissecting complex vesicu-
lar cargoes, leading to a new appreciation that DPMs play
critical roles in altering protein function, aggregation and
deposition in disease. Translating this recently acquired
knowledge into new clinical applications will be a major
challenge in the years ahead. Indeed, future studies will
need to employ targeted proteomics alongside discovery-
based approaches in order to fully elucidate dementia
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pathology and enable the development of novel therapies
for affected patients. Obtaining well-characterized tissues
from specific brain regions remains a major barrier to
progressing the field, but future advances will also require
the implementation of targeted government policies
and proteomics funding schemes that can help researchers
translate recent technological advances into novel
clinical applications.
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