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Abstract

Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation
and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains
unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family.
Although it was described more than a decade ago, our knowledge on LMTK2's biological functions is still insufficient.
Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we
identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal
transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an
Alzheimer’'s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near
future. However, further investigations are required to clarify the exact biological functions of this unique protein.
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Introduction

Neurodegeneration is characterised by irreversible struc-
tural and functional damage of neurons leading to extensive
cell death in numerous central nervous system disorders.
According to the affected central nervous system regions, a
wide range of clinical symptoms (e.g. dementia, movement
disorder, etc.) can be observed. In definition, dementia is an
acquired, progressive cognitive decline severe enough to
make difficulties in daily-life [1]. Alzheimer’s disease is the
most frequent neurodegenerative dementia with a preva-
lence of 26.6 million [2]. There are several and relatively
common neurodegenerative disorders (e.g. amyotrophic lat-
eral sclerosis) where the neuronal damage affects other re-
gion of the central nervous system (ie. motor neurons)
although some forms of motor neuron diseases are also ac-
companied by cognitive impairments and dementia [3, 4].
Considering the fact that clinical symptoms usually appear
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in elderly, except in uncommon familial forms, prevalence
will undoubtedly increase in the next few decades. Prince
et al. have predicted that the number of patients with de-
mentia will double every 20 years reaching 115.4 million
globally by 2050 [5]. This tendency in our aging society
may raise dementia to the most challenging public health
issue for the medical and social care system in the future.
Despite their significance, neurodegenerative diseases are
still incurable. The available therapies are limited to miti-
gation and mere delay of clinical symptoms. Therefore, in-
tensive study of the field is essential to reveal the
underlying pathomechanism and to identify new thera-
peutic targets for drug development. There is emerging
evidence that alterations in the level of synaptic proteins
and in their regulation are highly involved in the molecu-
lar pathogenesis [6-9], and clinical symptoms [10-12] of
neurodegenerative disorders.

LMTK2, a brain enriched neuronal kinase has recently
become of interest in neurodegenerative disease research
since it regulates a number of fundamental cellular path-
ways linked to neurodegeneration. These include links
to cyclin-dependent kinase 5 (CDK5)/p35, glycogen syn-
thase kinase-3p (GSK3p), protein phosphatase-1 (PP1)

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-018-0363-x&domain=pdf
mailto:tibor.hortobagyi@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bencze et al. Molecular Brain (2018) 11:20

and also the axonal transport machinery [13-16]. There-
fore, changes in LMTK2 expression and activity may dis-
rupt synaptic regulatory processes and axoplasmic flow
to synapses leading to synaptic dysfunction, and neuro-
degeneration. Although our current knowledge on the
biological functions of LMTK?2 is limited compared to
many other kinases, we aimed to provide a brief review
of the literature and to delineate LMTK2’s potential role
in neurodegenerative pathology.

Characteristics of LMTK2

LMTK2 was originally described by three groups inde-
pendently using yeast two-hybrid screens and database
search [14, 16, 17]. The gene of LMTK2 has been
mapped on human chromosome 7q21.3 and encodes a
protein with molecular weight of 250 kDa. Due to paral-
lel discoveries, LMTK2 is also known as kinase/phos-
phatase/inhibitor-2, CDK5/p35-regulated kinase, brain-
enriched kinase, apoptosis-associated tyrosine kinase-2
and KIAA1079 [14, 16—19]. LMTK2 is a member of the
structurally unique membrane anchored lemur kinase
protein family along with LMTK1A, LMTKI1B and
LMTKS3 [18, 19]. At first sight, LMTK2 appears to be a
dual specific tyrosine-serine/threonine kinase based on
the similarity of its kinase domain sequence to other
tyrosine kinases. However, it has been demonstrated by
independent studies that LMTK2 is a serine/threo-
nine-specific kinase and do not target tyrosine resi-
dues [14, 17, 20]. Therefore, the name ‘lemur tyrosine
kinase’ does not accurately reflect the kinase property
of this protein. We suggest ‘lemur tail kinase’ as new
name instead of the misleading and confusing ‘lemur
tyrosine kinase’. In this way, the acronym LMTK can
be kept ensuring that the gene/protein naming remains
consistent in the literature.

LMTK2's kinase activity was investigated by in vitro
kinase assays and peptide microarray. In these experi-
ments, recombinant and highly purified LMTK2 protein
was used (i.e. no other kinase was present in the reac-
tion) which exhibited autophosphorylation and also
phosphorylated target proteins suggesting that LMTK2
is a constitutively active kinase [14, 20] LMTK2 is
anchored into membranes by its tandem amino-terminal
transmembrane domains in a way that both its amino-
and carboxyl-termini face towards the cytoplasm [21].
The transmembrane domains are followed by an amino-
terminal kinase domain and a long carboxyl-terminal
‘tail. This long ‘tail’ inspired the recently used name
after the long-tailed Madagascan lemurs. LMTK2 is pre-
dominantly but not exclusively expressed in the brain
and highly enriched in the hippocampus and cerebral
cortex [16—19]. In neuronal cells, it is located in the cell
body, along neurites and in growth cones [16—18]. Intra-
cellularly, a proportion of LMTK2 is present in the Golgi
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apparatus and early endosomes [16, 22, 23]. LMTK2
starts to be highly expressed in the first two-three post-
natal weeks [16-18] suggesting its role in postnatal
neuronal development. In support of this notion,
LMTK?2 is reported to undergo rapid, protein kinase C
(PKC)-dependent phosphorylation in PC12 cells follow-
ing neuronal growth factor (NGF) stimulation however,
if PKC directly phosphorylates LMTK2 is not known
[17, 20]. NGF signalling reduces LMTK2 activity which
in turn enhances neurite outgrowth indicating that
LMTK?2 is a negative regulator of neuronal differenti-
ation [17, 20]. Another regulator of LMTK2 kinase activ-
ity is CDK5/p35 and the details of this regulatory
mechanism are discussed in the next section below.
Interestingly, the carboxyl-terminal tail of LMTK2 contains
seven proline-(any residue-any residue)-proline (PxxP) mo-
tifs [17]. Proteins with PxxP motif can directly bind to pro-
teins with Src homology 3 (SH3) domain [24, 25].
Numerous kinases contain SH3 domains or interact with
target proteins via SH3 domain containing scaffolding pro-
teins [26, 27]. Therefore, LMTK2 might be regulated by ki-
nases with SH3 domains or alternatively, LMTK2 can
phosphorylate downstream targets by recruiting them by
its PxxP motifs. Although this is an attractive theory no
SH3 domain containing LMTK2 binding partner has been
identified yet.

To date, one LMTK2 animal model has been pub-
lished. LMTK2 knockout mice have been found to be vi-
able but male mice are infertile due to azoospermia [28].
This alteration derives from the defected maturation of
germ cells, suggesting that LMTK2 is also essential to
physiological spermatogenesis. However, the effects of
LMTK?2 loss on the nervous system in these animals has
not been properly studied and reported. In order to dis-
sect neuronal function of LMTK2, further LMTK2 ani-
mal models need to be developed and investigated.

LMTK2 interacting partners

Although a fully detailed interacting network of LMTK2
remains to be elucidated there are several known
protein-binding partners and signalling pathways which
suggest essential role of LMTK2 in key cellular pro-
cesses. LMTK2 interacting partners include CDK5/p35,
the catalytic subunit of protein phosphatase 1 (PP1C)
and myosin VI. Details of their interaction and potential
cellular functions are discussed below.

CDK5/p35

CDKs are proline-directed serine/threonine protein-
kinases involved in cell cycle and transcription regula-
tion, neuronal morphogenesis, and neuronal differenti-
ation [29]. LMTK2 interacts with CDK5 via binding to
p35, the activator subunit of CDK5 [15, 16]. This inter-
action is mediated by a sequence (amino acid 391-632)
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closely located to the kinase domain of LMTK2 however,
where LMTK?2 binds to p35 and how this interaction is
regulated is not known [16]. CDK5 is a unique member
of the CDK family. Unlike other CDKs, CDK5 does not
require activating phosphorylation by cyclins instead it
needs binding to activator proteins or their cleaved
counterparts p35/p25, or p39/p29 [30, 31]. CDK5 has
vital role in neuronal maturation, migration, synaptic
plasticity and memory formation as well as in synaptic
vesicle exocytosis by phosphorylating several down-
stream targets [29, 31]. CDK5/p35 not only binds to
LMTK2 but also phosphorylates it on serine-1418 [15, 16].
This phosphorylation induces increased LMTK2 kinase ac-
tivity and simultaneously stimulates its ability to phosphor-
ylate downstream targets such as PP1C [15]. Thus, LMTK2
together with CDK5/p35 can regulate key neuronal pro-
cesses which are vital for proper neuronal functioning.
CDKS5 is functionally inactive in non-neuronal tissues be-
cause CDK5 activator p35 expression is restricted to neu-
rons [15, 32-34]. Nevertheless, a small amount of
phospho-LMTK2 serine-1418 was still detectable in non-
neuronal cells suggesting that other kinases can also acti-
vate LMTK2 by phosphorylating LMTK2 serine-1418 in
non-neuronal tissues [15]. Interestingly, both CDK5 and
mitogen-activated protein kinase (MAPK) are proline-
directed serine/threonine protein-kinases with a very simi-
lar consensus sequences which are (any residue)-serine/
threonine-proline-(any residue)-lysin/histidine/arginine for
CDK5, and proline-(any residue)-serine/threonine-proline
for MAPK [35, 36]. This similarity that both CDK5 and
MAPK require a proline immediately downstream of the
targeted serine/threonine residue raises the possibility that
MAPK might also target the same residues in LMTK2 as
CDK5. Thus, LMTK2 kinase activity might not only been
regulated by CDK5/p35 but also by MAPK. Indeed, experi-
mental data show that treating PC12 cells with NGF or
PKC activator increases MAPK/CDK specific phosphoryl-
ation of LMTK2 however, if this increased phosphorylation
was induced directly by MAPK or CDK5 is not known
[17]. To sum up, LMTK2 can phosphorylate and regulate
downstream targets, and play important role in both neur-
onal and non-neuronal processes.

PP1C

PP1 is a protein serine/threonine phosphatase which is
involved in myriad fundamental cellular functions. Inter-
acting with distinct regulatory subunits, PP1C controls
cell cycle, apoptosis, glycogen homeostasis, RNA splicing,
protein synthesis, muscle activity and neuronal processes
[37, 38]. PP1C binds to proteins with an arginine-valine-
(any residue)-phenylalanine motif, also known as RVxF
motif [39, 40]. LMTK2 contains a valine-threonine-
phenylalanine (VTF) motif close to its carboxyl-terminus
and binds to PP1C through this motif [13-15]. Upon
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binding to PP1C, LMTK2 phosphorylates it on
threonine-320 which attenuates the phosphatase activity
of PP1C [13-15]. This PP1C inhibitory activity of
LMTK?2 is facilitated by CDK5/p35-dependent phosphor-
ylation of LTMK2 on serine-1418, thus CDK5/p35 and
PP1C together with LMTK2 function in one common
signalling pathway [13, 15]. Interestingly, LMTK2 also
binds to inhibitor-2, one of the regulatory subunits of
PP1C which restricts PP1C activity when they interact
[14, 41]. Thus, LMTK2 regulates PP1C activity and in
this way downstream cellular processes by two independ-
ent mechanisms phosphorylating it on threonine-320,
and complex it with inhibitor-2.

Myosin VI

Myosin VI is an actin-based molecular motor protein in-
volved in retrograde transport of endo- and exocytotic
membranes. It is known that some binding partners of my-
osin VI are involved in intracellular targeting and recruit-
ment of myosin VI [42-45]. Two research groups
simultaneously identified LMTK2 as a myosin VI binding
partner. LMTK2 directly binds to a tryptophan-tryptophan-
tyrosine (WWY) motif in the carboxyl-terminal tail of my-
osin VI [22, 46]. The WWY motif is the same site where
other endocytic adaptor proteins bind to myosin VI how-
ever, how cargoes are selected and their binding to myosin
VI is regulated is not known [42, 46, 47]. LMTK?2 binds to
the WWY motif of myosin VI through a region close to its
kinase domain (amino acid 567-773) which overlaps with
the p35 binding region (amino acid 391-632) [16, 22]. This
overlap between the residues where myosin VI and p35 as-
sociate to LMTK2 raise the possibility of competition be-
tween myosin VI and p35 for LMTK2 binding although, to
date, there is no confirming experimental data. LMTK2
and myosin VI co-localise in endocytic and recycling endo-
cytic vesicle compartments. Through binding to myosin VI,
LMTK?2 is essential for the endocytic transport of transfer-
rin receptor, a cargo of myosin VI [22, 23]. Interestingly,
cystic fibrosis transmembrane conductance regulator
(CFTR), a chloride ion selective ion channel which muta-
tion causes cystic fibrosis, binds not only to myosin VI but
also directly interacts with LMTK2 [20, 48—50]. In addition,
CFTR is also a substrate of LMTK2. Phosphorylation of
CFTR on serine-737 by LMTK2 enhances CFTR endocyto-
sis and thus LMTK2 regulates CFTR availability on the cell
surface [20, 48]. These findings indicate that LMTK2 has
significant role in the orchestration of endocytic/recycling
machinery together with myosin VI. Yet, the exact regula-
tion of this mechanism remains to be elucidated.

Implications in neurodegeneration

LMTK?2 is involved in neuronal outgrowth and develop-
ment, axonal transport, intracellular vesicle trafficking,
and apoptosis [13, 22, 23, 48, 51]. Yet, the precise way
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how LMTK2 orchestrates these processes remains disease development, and this reduction correlates with
undiscovered. The determinant alterations in neurode- pathological changes. In contrast, in the cerebellum, in-
generation are disrupted axonal transport, pathological creased LMTK2 expression was detected and the ani-
accumulation/aggregation of disease-specific proteins mals did not show any cerebellar Alzheimer’s disease
and dysregulated apoptosis which together lead to neur-  pathology. As it is detailed above, CDK5/p35 phosphory-
onal loss [52, 53]. Taking into account of biological func-  lates LMTK2 to activate it [15]. In neurodegeneration
tions of LMTK2, there is a plausible link between linked cellular stress conditions, such as f-amyloid over-
LMTXK2 and neurodegenerative processes (Fig. 1). production or oxidative stress, calcium-dependent cyst-

LMTK?2 is enriched in the brain suggesting its crucial eine protease calpain is activated, and proteolytically
role in the central nervous system [16-19]. A recent cleaves p35 into p25 and p10 [55-58]. Owing to its lon-
genome-wide gene-expression study compared five ger half-life, p25 prolongs the active state of CDK5
amyloid and tau transgenic mice lines, and created a resulting in increased phosphorylation of downstream
database [54]. Progressively decreasing LMTK2 expres-  targets [56, 59, 60]. However, if CDK5/p25 can phos-
sion was found in the cortex and hippocampus predom-  phorylate LMTK2 in the same way as CDK5/p35 is not
inantly in the tau mouse model (Tau P301L) during the  known. Although the number of experimental studies is
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certainly limited, based on the known biological func-
tions and interacting partners, we attempt to provide a
brief explanation how the previously reported reduced
LMTXK?2 levels in Alzheimer’s disease animal model, and
potentially disrupted phosphorylation cascade can con-
tribute the disease pathology.

Disrupted axonal transport

Physiological axonal transport is fundamental for main-
taining the complex neuronal homeostasis. Neurons are
polarised cells with majority of their proteins synthetized
in the soma and require therefore well-organized intra-
cellular transport to reach their targets. There are four
vital actors in this play: microtubule tracks, molecular
motor proteins, cargoes and energy in the form of ATP.
Any disruption to this precise machinery perturbs
axonal transport and causes aberrant accumulation of
proteins, and organelles in different neurodegenerative
pathologies in dementias, movement disorders and
motor neuron diseases, for review see [52].

Kinesin-1 is a major molecular motor protein mediat-
ing axonal transport of several key cargoes such as mito-
chondria, amyloid precursor protein and synaptic vesicle
precursors towards synapses [61-64]. Most functional
kinesin-1 is a heterotetramer composed of two kinesin-1
heavy chains and two kinesin-1 light chains (KLCs).
Kinesin-1 heavy chains move along microtubules while
KLCs are mainly involved in cargo binding [62]. Phos-
phorylation of KLCs is an important cargo binding and
releasing regulatory mechanism [61, 65, 66]. GSK3p can
directly phosphorylate KLC2 to induce cargo release and
supress kinesin-1 mediated transport [13, 65]. Involve-
ment of CDK5 in GSK3p-dependent regulation of axonal
transport was first described by Morfini et al. [66]. They
have reported that CDK5 indirectly regulates GSK3f ac-
tivity via PP1C. However, the nature of interaction (i.e.
direct or indirect) between CDK5/p35 and PP1C was
unclear [66]. Manser and co-workers have recently re-
vealed that LMTK2 is the missing link between CDK5/
p35, PP1C and GSK3[ which brings these proteins to-
gether in one phosphorylation pathway to regulate
kinesin-1 based axonal transport [13, 15]. In this novel
signalling pathway, CDK5/p35 activates LMTK2 by
phosphorylating it at serine-1418. Phosphorylated
LMTK?2 in turn reduces PP1C activity by phosphorylat-
ing it at threonine-320. Finally, phosphorylation of PP1C
threonine-320 leads to increased inhibitory phosphoryl-
ation of GSK3p at serine-9 [13, 15]. Inhibited GSK3p is
not able to phosphorylate KLC2 which promotes KLC2
binding to cargos, such as mothers against decapentaple-
gic homolog 2 (Smad2). Thus, LMTK2 is a negative
regulator of KLC2 phosphorylation and LMTK2 activity
promotes kinesin-1 based transport of Smad2 [13, 67].
Smad2 is a transcription factor which shuttles between
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the cytoplasm and nucleus, and is a crucial player in
transforming growth factor-p (TGEp) signalling pathway
[68]. TGEP induces Smad2 translocation into the nu-
cleus where it regulates the expression of TGEp-
responsive genes [69]. siRNA knockdown of LMTK2 dis-
rupts Smad2 binding to KLC2 and importantly, it also
inhibits TGEFp-induced nuclear signalling of Smad2
probably due to affected Smad2 transport [13]. Reduced
LTMK?2 gene-expression has been detected in an Alzhei-
mer’s disease tau mouse model [54]. Additionally, altered
TGFB/Smad2 signalling has been observed in common
neurodegenerative diseases, including Alzheimer’s dis-
ease [70, 71] suggesting that LMTK2 is not only in-
volved in the regulation of kinesin-1 based transport but
also can contribute the pathomechanism of neurodegen-
erative diseases by affecting axonal transport.

Tau hyperphosphorylation

Neurofibrillary tangles are hallmark intraneuronal
pathological features of Alzheimer’s disease. Neuro-
fibrillary tangles consist of misfolded and abnormally
hyperphosphorylated tau, a microtubule-associated
protein [72, 73]. CDK5 and GSK3p are major tau ki-
nases which are involved in tau hyperphosphoryla-
tion in vivo [74-77]. Although both CDK5 and
GSK3p are sufficient to hyperphosphorylate tau,
negative correlation has been revealed between their
activities. It has been shown that increased CDK5 ac-
tivity inhibits GSK3p by increasing its inhibitory
phosphorylation at serine-9 [13, 15, 66, 78, 79].
Interestingly, CDK5 mediated GSK3p inhibition is
age dependent. In young mice, GSK3[ activity is re-
duced compared to aged mice where GSK3p activity
is increased causing tau hyperphosphorylation [79,
80]. The exact mechanism of age dependently en-
hanced GSK3p activity and tau hyperphosphorylation
is not known. One possible explanation is that the
molecular breaking mechanism which inhibits GSK3p
activity is defective. Progressively decreasing LMTK2
levels seen in an Alzheimer’s disease mouse model
[54] could potentially lead to aberrant overactivation
of GSK3p in aged mice. It is important to note that
decreased LMTK2 levels and/or kinase activity leads
to increased PP1C activity [13, 15]. It is also known
that hyperphosphorylated tau filaments are able to
activate PP1 [81-83]. PP1 can dephosphorylate tau
on some residues which are abnormally hyperpho-
sphorylated in Alzheimer’s disease [84, 85]. In fact,
despite increased PP1 activity, tau remains hyperpho-
sphorylated in Alzheimer’s disease suggesting that
elevated tau phosphatase activity of PP1C cannot
counterbalance increased GSK3p activity. The above
hypothesis explains some aspects of tau hyperpho-
sphorylation however, it needs further investigation.
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Table 1 Gene expression studies of LMTK2 in neurodegeneration
Disease Research model Disease sample Control sample LMTK2 gene Statistical ~ Reference
expression in disease  significance
sample
Alzheimer's Mouse tissue Tau P301L cortex and Wild-type cortex Decreased Not known  [54]
disease hippocampus and hippocampus
Parkinson's Human tissue Substantia nigra Substantia nigra Decreased Not known [107]
disease from controls
Amyotrophic ~ Human embryonic stem Neurons exposed to mutant SOD1  Non-treated Decreased Not known [108]
lateral sclerosis  cell-derived motor neuron  astrocyte conditioned medium neurons
Huntington's ~ Mouse tissue DE5 (D9-N171-98Q) striatum Wild-type striatum Decreased Yes (p = [109]
disease 0,025)
Apoptosis genes triggering the progression of the lethal apoptotic

A recent siRNA-based high-throughput screen has identi-
fied LMTK2 as a potential regulator of apoptosis [51].
siRNA mediated LMTK2 knockdown decreases anti-
apoptotic B-cell lymphoma-2 (Bcl-2) and B-cell
lymphoma-extra-large (Bcl-xL), and increases pro-
apoptotic Bcl-2-interacting mediator of cell death (Bim)
protein levels [51]. These LMTK2-associated alterations
made cells more sensitive to toxic effects of apoptosis in-
ducing ligands and other cytotoxic compounds. The effect
of LMTK?2 silencing on Bim levels is mediated by in-
creased PP1C and GSK3p activity [51]. Bim levels are also
decreased in the brain of Alzheimer’s disease patients and
Bcl-2 is protective against Alzheimer’s disease-related in-
sults [86, 87]. LMTK?2 silencing was also accompanied by
decreased Akt and extracellular signal-regulated kinase-1/
2 (ERK1/2) activity [51, 88-91]. These changes can also
contribute to apoptosis but the exact mechanism how
LMTK2 can modulate Akt and ERK1/2 activity is not
known. In essence, these results suggest that decreased
LMTK?2 levels can sensitise cells to cytotoxicity via affect-
ing apoptotic and survival pathways, and it is consistent
with the hypothesis that reduced LMTK2 levels may con-
tribute to cell death in neurodegeneration.

According to our current knowledge, the majority of
neurons are terminally differentiated cells [92]. However,
certain noxious stimuli (e.g. oxidative stress, p-amyloid
peptide, tau hyperphosphorylation) can induce aberrant
cell cycle reactivation [20, 29, 93-95]. Since neurons lost
their proliferative capacity, the abnormal cell cycle re-
entry is interrupted by different regulatory mechanisms
leading to apoptosis, for review see [95, 96]. Therefore,
noxious stimuli which induce uncontrolled cell prolifera-
tion in other tissues could cause extensive cell death in
neuronal tissue. In neurons, aberrant cell cycle reactiva-
tion upregulates cyclin D and cyclin E expression, and in-
creases the activity of G; and G, phase CDKs [97-102].
Increased CDK activity results in retinoblastoma protein
phosphorylation and concomitant E2F release in neurons
[99, 102, 103]. E2F promotes the expression of pro-
apoptotic genes and transactivates downstream cell cycle

cycle [104]. Considering LMTK2 as tumour suppressor/
pro-apoptotic protein, it is possible that E2F reduces
LMTXK?2 levels by transcriptional silencing. Supporting this
theory, several studies have reported decreased LMTK2
expression in both neurodegeneration and cancer [54,
105-109]. Nevertheless, the potential link between E2F
and the LMTK2 gene has yet to be explored.

Conclusion and prospects
Prevalence of neurodegenerative diseases are exponen-
tially increasing in our aging society. Considering that
these frequent pathologies mostly affect the elderly, it is
critical to provide an effective solution to this urgent
issue. Although our knowledge is still insufficient, the
latest studies point toward to the same direction:
LMTK?2 is involved in neurodegeneration (Table 1).
Despite the limited amount of studies in the field,
LMTK2 seems to be mis- and downregulated in Alzhei-
mer's, and other neurodegenerative diseases. Therefore,
manipulation of the protein level could be a promising
novel therapeutic target. A recent study has identified a
2-O-Tetradecanoylphorbol-13-acetate (TPA) responsive
element in LMTK?2 gene [110]. TPA is a synthetic PKC
activator with ability to increase LMTK2 expression.
The mechanism requires activator protein-1 transcrip-
tion factor complex binding to LMTK2 promoter region
in which the complex is trans-activated by protein kin-
ase C [110]. These results are probably valuable but cer-
tainly not sufficient for drug development. Thus, further
comprehensive investigations are essential to reveal and
to understand the function of LMTK2 in neurodegener-
ative processes.
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