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High frequency optogenetic activation of
inputs to the lateral amygdala forms
distant association with foot-shock
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Abstract

Aim: A hallmark of classical conditioning is that conditioned stimulus (CS) must be tightly coupled with unconditioned
stimulus (US), often requiring temporal overlap between the two, or a short gap of several seconds. In this study, we
investigate the temporal requirements for fear conditioning association between a strong artificial CS, high-frequency
optogenetic activation of inputs into the lateral amygdala of rats, and a foot-shock to the animal with delays up to
many minutes.

Methods: AAV-oChIEF-tdTomato viruses were injected into the auditory cortex and the medial geniculate nucleus of
rats. An optical fiber was implanted just above the lateral amygdala of the animal. Optogenetic high-frequency stimuli
(oHFS; containing five 1-s trains of 100 Hz laser pulses) were delivered to the lateral amygdala, before or after (with
varying intervals) a foot-shock that elicits fear responses in the animal. Pre-trained lever-press behavior was used to
assess the degree of fear recall by optogenetic test stimuli (OTS; 10 Hz for 2 min) 24 h after the association experiment.

Results: In contrast to the tight temporal requirement for classical conditioning with paired optogenetic moderate-
frequency stimuli (oMFS; 10 Hz for 20 s) and foot-shock, oHFS followed by foot-shock with a 5-min or even 1-h (but not
3-h) interval could successfully establish an association to be recalled by OTS the next day. Meanwhile, foot-shock
followed by oHFS with a 5-min (but not 1-h) interval could also establish the conditioning. Thus, distant association
may be formed between temporally distant stimuli when the CS is strong.
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Animals live in a complex environment and experience
many events of different significance every day. Learning
the causal or temporal relationship, i.e., forming associ-
ation, between important events is crucial for the animal
to adapt to the environment and survive. In classical
conditioning, long-term associative memory is formed
after repeated pairing of the conditioned stimulus (CS)
and the unconditioned stimulus (US) [1, 2], often with

the US presented before the end the CS presentation as
in the case of delay conditioning, or with the US follow-
ing the CS by short gaps of several seconds as in the case
of trace conditioning [3, 4]. When the gap is too long,
e.g. beyond 30 s, the mild CS and the strong US are con-
sidered “unpaired”, and association cannot be formed
between them [4]. Intuitively, the significance of sequen-
tial events could also have an impact on the formation
of association. However, it has remained unclear
whether a stronger (and perhaps more significant) “CS”-
like stimulus can form “distant” association with the US
separated by longer gaps.
The lateral amygdala (LA) has been established as a

key brain area for auditory fear conditioning [5–7]. In a
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Fig. 1 (See legend on next page.)
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recent study [8], Nabavi et al. used optogenetic stimula-
tion to axonal inputs into the LA from the auditory
cortex (AC) and the medial geniculate nucleus (MGN),
to investigate its association with the US (foot-shock)
and how this association could be erased by long-term
depression (LTD) and reestablished by long-term potenti-
ation (LTP). Inspired by this paradigm, we expressed a
light-activated channelrhodopsin ChIEF via adeno associ-
ated virus (AAV) in the AC and the MGN of Sprague-
Dawley rats, and implanted an optic fiber above the LA
for optogenetic stimulation of axonal inputs in this area
from the virally infected neurons (Fig. 1a). Optogenetic
stimulation and foot-shocks were used for association
training, followed by fear recall testing with a pre-trained
lever-press task 24 h later [9, 10] (Fig. 1b, Additional file 1:
Materials and Methods).
With this system, we first confirmed that optogenetic

moderate-frequency stimuli (oMFS; 10 Hz for 20 s)
paired with foot-shocks delivered at the end of each
stimulation train (repeated every 3 min for 5 times) re-
sulted in associative fear memory, which when recalled
by a 2-min train of 10 Hz optogenetic test stimuli (OTS)
the next day, interrupted lever-press behavior (Fig. 1c-e).
In contrast, “unpaired” oMFS with foot-shocks delivered
at least 1-min afterwards could not establish such associ-
ation: OTS the next day did not affect lever-press behav-
ior (Fig. 1c-e). These results are consistent with previous
findings [8], and suggest that optogenetic stimulation to
the LA input projections could be used as an artificial
“CS” for classical fear conditioning.
To evaluate the effects of a stronger artificial “CS” for

potential “distant association”, we chose optogenetic high-
frequency stimuli (oHFS; 100Hz light pulses for 1 s,
repeated 5 times every 3 min), followed by a single 3-s
foot-shock with a delay of 5 min, 1 h or 3 h after the
oHFS (Fig. 1f). In the lever-pressing test the next day,
the same 10 Hz OTS was used because it is closer to
the physiological firing frequency of LA neurons during
natural fear recall [11]. Intriguingly, animals trained at 5-

min and 1-h (but not 3-h) oHFS-shock intervals exhibited
apparent fear recall behavior, with lever press significantly
inhibited by OTS during the test (Fig. 1g-h). Therefore, a
stronger CS-like stimulus could indeed establish distant
association with the US delivered even after 1 h later.
As a control experiment, we used rats with AAV-hSyn-

tdTomato injected in the AC and the MGN. These animals
were trained with oHFS followed by foot-shock 1 h later
(Fig. 1g-h, vector-1-h group). No fear response was de-
tected during fear test the next day in these animals, in con-
trast to the significant reduction of lever pressing in the
oChIEF expressing 1-h group (Fig. 1g-h). Thus, the behav-
ioral responses are most likely due to optogenetically
evoked neuronal activity in the LA. In another control ex-
periment, we trained the animal using a similar paradigm
but replaced the oHFS with oMFS (10 Hz for 50 s, total
500 pulses to match the pulse number in oHFS). We
found that even when the foot-shock followed the
prolonged oMFS by only 10 s, no fear response was
recalled by OTS the next day (Additional file 1: Fig.
S1). Thus, the high stimulation frequency in oHFS
was crucial for such distant association.
We further tested “backward” distant association by

delivering the foot-shock first, followed by the oHFS at
different intervals (Fig. 1i). Intriguingly, fear response
was observed in the lever-pressing test the next day for
animals with 5-min shock-oHFS interval but not those
with 1-h interval (Fig. 1j-k). Thus, the distant association
appeared to be bi-directional and temporally asymmetric,
reminiscent of bi-directional trace conditioning observed
in previous studies, although the latter has a much shorter
timescale [12].
How could the oHFS form distant association with the

foot-shock? It has been well established that synaptic
plasticity such as NMDA receptor-dependent LTP in the
LA plays an important role in fear conditioning [8, 13, 14].
With systemic NMDA receptor blocker MK801 injection
before association training, we found that distant associ-
ation at 1-h oHFS-shock interval could not be formed

(See figure on previous page.)
Fig. 1 Association between optogenetic stimulation and foot-shock. a Expression of oChIEF-tdTomato in the AC and the MGN (left), as well as
the LA (right) 4 weeks after viral injection. Blue arrow indicates position of implanted optic fiber. Scale bars: 500 μm. b Behavioral paradigms of
associative fear training (left) and recall test (right). c. Fear training using oMFS paired or unpaired with foot-shocks (repeated every 3 min for 5
times). Fear response was assessed in the lever-pressing box 24 h later with OTS. d Normalized number of lever presses (shown in 1-min bin)
from lever-pressing tests 24 h after fear training. Lever pressing was significantly inhibited by OTS (blue area) in the paired group (n = 4) but not
in the unpaired group (n = 4). * indicates P < 0.05; one-way repeated ANOVA followed by Tukey’s multiple comparison test. All error bars in this
and subsequent figures are SEM. e Mean normalized number of lever presses during the 2 min of the OTS. Significant reduction in lever pressing
was found in paired group (n = 4) compared with the unpaired group (n = 4). ** indicates P < 0.01; Student’s t-test. f-h Similar to c-e, but for fear
training with oHFS followed by a 3-s foot-shock with a delay of 5 min, 1 h or 3 h. Significant reduction in lever pressing was found in the 5-min
group (n = 6) and 1-h group (n = 7), but not in the oHFS alone group (n = 6) or 3-h group (n = 6) or vector-1-h control group (n = 6). * indicates
P < 0.05; *** indicates P < 0.001; one-way repeated ANOVA (g) and one-way ANOVA (h) followed by Tukey’s multiple comparison test. i-k Similar
to f-h, but for fear training with oHFS 5 min and 1 h after the foot-shock. Significant reduction in lever pressing was found in the 5-min group
(n = 7) but not in the 1-h group (n = 6). The same data for the oHFS alone group in g-h is shown here again as a control. *** indicates P < 0.001;
one-way repeated ANOVA (j) and one-way ANOVA (k) followed by Tukey’s multiple comparison test
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(Additional file 1: Fig. S2), indicating that NMDA receptor
and activity-dependent synaptic plasticity are likely in-
volved in this process. However, neuronal activation and
NMDA receptor signaling in the current paradigm occur
on the timescale of milliseconds to seconds, much shorter
than that for distant association. One possible scenario is
that the oHFS caused long-lasting changes in neuronal
excitability and network activation, which act as a long
“trace” to couple with the distant US. Along this line,
comparing how different patterns of optogenetic stimuli
elicit different levels of acute and chronic neural activation
in the LA in vivo and in vitro could provide important
insights. Another possibility is that the oHFS (perhaps
via strong activation of NMDA receptors) initiated syn-
aptic plasticity signals that lasted for minutes to hours
and “consolidated” by subsequent US, through a mech-
anism analogous to “synaptic tagging” [15]. Whereas
these possibilities remain to be investigated in future
studies, the existence of distant association beyond the
usual timescale of classical conditioning demonstrates
the complexity of associative learning, and suggests
new mechanisms underlying learning and memory as
well as related brain disorders.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13041-020-00587-4.

Additional file 1: Materials and Methods, Fig. S1 Distant association
could not be formed with oMFS followed by foot-shock, Fig. S2 Systemic
administration of MK801 before fear training blocked distant association.
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