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Abstract 

Mutations in the Vacuolar protein sorting 35 (VPS35) gene have been linked to familial Parkinson’s disease (PD), 
PARK17. VPS35 is a key component of the retromer complex, which plays a central role in endosomal trafficking. How‑
ever, whether and how VPS35 deficiency or mutation contributes to PD pathogenesis remain unclear. Here, we ana‑
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genes and mutant proteins has revealed the pathophysi-
ological mechanisms of both familial and sporadic PD [6, 
8, 9].

Vacuolar protein sorting 35 (VPS35, also called 
PARK17) was reported to be a pathogenic gene for late-
onset autosomal dominant PD. A single missense muta-
tion, c.1858G > A (p.D620N), was originally shown to 
segregate with PD in Swiss and Austrian families and 
has been identified in several PD subjects and families 
worldwide [10, 11]. VPS35 mutation is the second most 
common cause of late-onset familial PD after LRRK2 
mutations. Additional rare VPS35 variants (i.e., p.M57I, 
p.I241M, p.P316S, p.R524W, p.A737V, and p.L774M) 
may also be linked to PD, although their pathogenicity 
remains unclear. The mean age of onset of PD in patients 
with the VPS35 mutation is 53 years [11], and the clinical 
symptoms of these patients closely resembled those of the 
idiopathic form of PD, which manifests as tremor-domi-
nant dopa-responsive parkinsonism [12]. One autopsy 
case of PARK17 was reported in Japan. There were no 
Lewy bodies in DA neurons in the substantia nigra pars 
compacta, but phosphorylated α-synuclein had aggre-
gated in the neurons of the substantia nigra, locus coer-
uleus, dorsal vagal nucleus, nucleus basalis of Meynert, 
and cardiac muscle. This distribution of α-synuclein is 
similar to that observed in sporadic PD [13].

VPS35 is a key component of the retromer complex 
[14–18]; it contains two protein subcomplexes: a cargo-
selective subcomplex that consists of a trimer of VPS35, 
VPS29, and VPS26 and a membrane deformation sub-
complex that consists of sorting nexin dimers [15, 16]. 
The most widely characterized role of the retromer is 
recycling of transport proteins back to the trans-Golgi 
network (TGN) in the endosomal trafficking system 
[19–21]. Numerous transmembrane proteins/receptors, 
including cation-independent mannose 6-phosphate 
receptor (CI-MPR) [21], amyloid precursor protein (APP) 
[22], APP processing β1 secretase [23], Wntless [24–26], 
β2-adrenergic receptor [27], and AMPA-type glutamate 
receptors [28], have been identified as retromer cargos. 
New evidence indicates that the retromer is a “master 
conductor” of endosomal sorting and trafficking [14]. 
The retromer complex plays a central role in endosomal 
trafficking, and retromer dysfunction has been linked to 
neurological disorders, such as PD and AD [29].

Endosomal trafficking is essential for the maintenance 
of cellular homeostasis and plays a crucial role in the 
trafficking of proteins through the cellular endomem-
brane system. Neurons are heavily dependent on such 
protein trafficking processes by endosomes. Following 
its internalization at the plasma membrane by endocyto-
sis, the cargo is delivered to the early endosome, where 
sorting occurs. This trafficking step is highly selective 

and involves a series of membrane fusion/fission events 
mediated by specific GTPases. The maturation from 
early to late endosome occurs as a continuum associated 
with an increase in the number of intraluminal vesicles 
(multivesicular bodies; MVBs), luminal acidification, and 
endosome movement from the cell periphery toward the 
nucleus [30–32]. This morphological maturation is asso-
ciated with a molecular switch in GTPase composition 
with the loss of Rab5 expression and acquisition of Rab7 
[33]. The small GTPase  Rab5  is a marker  for the  early 
endosome and a key regulator of endosomal traffick-
ing processes. The small GTPase  Rab7  is known to be 
a marker of late endosomes. It has now been shown that 
Rab7a is required for recruitment of the cargo-selective 
retromer complex [17, 34, 35].

Genetic discoveries have started to illuminate cellular 
pathways and functions that are involved in the devel-
opment of PD, and impaired intracellular trafficking is 
emerging as a mechanistic link between many PD-asso-
ciated genes in the endosomal trafficking machinery 
and lysosomes [36]. A number of PD-associated genetic 
mutations and polymorphisms disrupt protein traffick-
ing and degradation through the endosomal pathway, 
and how such defects could arise from or contribute to 
the accumulation and misfolding of α-synuclein in Lewy 
bodies has been discussed [37].

In the present study, we generated patient-specific 
iPSC-derived DA neurons from PD patients with the 
VPS35 D620N mutation and healthy individuals. To 
understand the role of the retromer in the endosomal 
trafficking system, we observed the intracellular behav-
ior of endosomal vesicles by live-cell fluorescence imag-
ing and found that the VPS35 D620N mutation induced 
endosomal dysfunction.

Results
Generation and characterization of iPSCs from PD patients 
and Controls
Analysis of induced neurons differentiated from iPSCs 
(iNeurons) enables the construction of pathological 
models using the patient’s own cells. Such analyses are 
particularly useful for the study of neurodegenerative dis-
orders, because it is difficult to collect brain tissue sam-
ples from these patients.

First, we generated iPSCs from the peripheral blood 
mononuclear cells of two PD patients carrying the 
D620N mutation in the VPS35 gene (PD1 and PD2) 
and two healthy controls (Ctrl1 and Ctrl2). PD1 and 
PD2 are familial PD patients from the same family, 
as described previously (Family A in [12]). A detailed 
characterization of the PD and control lines used in this 
study is illustrated in (Additional file 1: Table S1). Two 
of the control iPSC lines (Ctrl2-1, Ctrl2-2)  have been 
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characterized and published previously [38]. All iPSC 
lines were stained for pluripotency markers (NANOG 
and SSEA4) (Additional file 2: Figure S1a). These iPSCs 
were able to differentiate into cells of all three germ lay-
ers in vitro (DIV) (Additional file 2: Figure S1a) and had 
a normal karyotype (Additional file 2: Figure S1b).

Differentiation and characterization of DA neurons
PD is primarily a movement disorder and shows a pre-
dilection for nigral DA neurons. To study the effect of 
the VPS35 D620N mutation in the context of PD, iPSCs 
were differentiated into DA neurons (Fig.  1a). A total 
of six different iPSC clonal lines from two control indi-
viduals and two PD patients were differentiated into 
DA neurons as described previously [39] with minor 
modifications (Fig.  1a). Briefly, neural stem cells pre-
pared from iPSCs were cultured in the presence of 
LND193189 and A83-01 to initiate neuronal induction 
with CHIR99021, FGF8, and purmorphamine. After 
12  days in  vitro (DIV), the cells were replated for dif-
ferentiation into DA neurons with ascorbic acid, cyclic 
adenosine monophosphate (cAMP), brain-derived 
neurotrophic factor (BDNF), and glial cell line-derived 
neurotrophic factor (GDNF) for 18 days. All lines suc-
cessfully differentiated into DA neurons (Fig.  1b). In 
this experiment, 47.9% of iPSC-derived cells were 
MAP2 positive neurons with long processes and 47% 
were GFAP positive glial cells with large cytoplasm 
(Additional file 3: Figure S2a, b, c).

The differentiation efficiency was assessed by deter-
mining expression of MAP2 and the DA neuronal 
marker tyrosine hydroxylase (TH) using immunofluo-
rescence. At 42 DIV, most of the cells from healthy 
controls were positive for the neuronal marker MAP2, 
and approximately 20% of MAP2-positive cells were 
also positive for TH. In contrast, among the cells from 
PD patients, fewer than 5% of MAP2-positive cells 
were positive for TH, indicating the possibilities of low 
efficiency of dopaminergic differentiation and occur-
rence of cell death in PD-derived DA neurons (Fig. 1d, 
e). Next, to investigate the cause of this reduction in 
TH-positive cells in PD, we examined the expression 
of cleaved caspase-3 (an apoptotic marker) (Fig.  1c). 
The number of cleaved caspase-3-positive cells was 
increased in both PD1 and PD2 iPSC-derived DA 
neurons compared with healthy control iPSC-derived 
DA neurons (Fig.  1f ). There was no significant differ-
ence in the number of cleaved caspase-3-positive cells 
in MAP2 positive neurons (Additional file  3: Figure 
S2d). These results indicate that DA neurons derived 
from PD patients carrying the VPS35 D620N mutation 
undergo apoptosis.

Colocalization of Retromers with either Rab5a or Rab7a 
in endosomal vesicles
Endosomes carry a range of proteins for targeted deliv-
ery [30, 32, 40]. In the endosomal pathway, cargos are 
internalized from the cell surface, which regulates their 
storage and recycling, or sent to lysosomes for degrada-
tion [41]. Two of the primary players of this endosomal 
system are early and late endosomes, which can be dis-
tinguished by their associated Rab GTPases [42]; Rab5 
coordinates clathrin-dependent endocytosis and the 
biogenesis of early endosomes and their fusion, whereas 
Rab7 regulates the transport and maturation of acidic late 
endosomes as well as their fusion with lysosomes [33]. 
Rab conversion, in which Rab7 supplants Rab5, is a key 
event in endosome maturation. The levels of both endo-
somal Rab5 and Rab7 vary during endosome maturation. 
The retromer complex is a key player in the endosomal 
trafficking of proteins and sorting. A past study suggested 
that the retromer is active during endosome maturation 
and that Rab7a mediates recruitment of the cargo-selec-
tive retromer complex [17].

Since the retromer complex plays an important role in 
endosomal trafficking, we used live-cell imaging tech-
nique to observe retromers and endosomes as previ-
ously described [21, 34]. To visualize movement of the 
retromer complex, we labeled endogenous retromers by 
the transduction of fluorescently labeled VPS29 (VPS29-
YFP), a component of the retromer complex. Most of 
the VPS29 in HeLa cells seems to be incorporated into 
retromers, since 98.9% of VPS29 positive vesicles were 
double positive for VPS35, a component of the retromer 
(Additional file  4: Figure S3a), although VPS29 is also 
known as a component of the retriever complex [18, 
43]. Similar observation was obtained in MAP2 positive 
iNeurons as well (Additional file  4: Figure S3b). So that 
we use VPS29-YFP as a reporter of retromers. To deter-
mine whether the retromer complex is associated with 
endosomes, we used RFP-Rab5a and RFP-Rab7a, which 
label early and late endosomes, respectively [33]. By 
expressing RFP-Rab5a and RFP-Rab7a with VPS29-YFP, 
we found that the movement of VPS29-YFP (retrom-
ers) was often associated with both early and late endo-
some reporters in the cytoplasm of HeLa cells (Fig.  2a, 
b). Vesicles positive for VPS29 were almost always found 
adjacent to Rab5a-positive vesicles, in more detail, sev-
eral VPS29-positive small vesicles moved around the 
Rab5a-positive vesicles without leaving the surface of 
endosomes. (Fig.  2a, Additional file  5: Movies S1 and 
Additional file 6: Movie S2). VPS29-positive vesicles were 
almost always double positive for Rab7a-positive vesicles 
and moving together as same vesicles (Fig. 2b, Additional 
file 7: Movies S3). Importantly, almost all retromer com-
plexes moved with Rab5a- or Rab7a-positive vesicles. The 
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Fig. 1 Differentiation and Characterization of iPSC‑derived Dopaminergic (DA) Neurons. a Schematic overview of the conditions used to 
differentiate iPSCs into DA neurons, with bright‑field representations of the cells at several stages of differentiation shown. b Immunostaining 
of differentiated DA neurons at 42 DIV. The neuronal marker MAP2 (red) and the DA neuron marker TH (green) are shown in the control and PD 
groups. c Immunostaining of apoptotic DA neurons (arrow heads) using markers of apoptosis (cleaved caspase‑3) and DA neurons (TH). DA 
neurons were positive for both cleaved caspase‑3 and TH. d, e Quantitative analysis of the number in a single field and percent of DA neurons 
among iPSC‑derived neurons (iNeurons). The number and percent of TH‑positive cells were lower in the PD group than in the control group 
(1.0 = 100%, n = 5 in control group, n = 5 in the PD group). f Quantitative analysis of the percent of apoptotic DA neurons among iNeurons. The 
percent of apoptotic cells was higher in the PD group than in the control group (1.0 = 100%, n = 3 in the control group, n = 3 in the PD group). 
Data are represented as mean ± SEM; n.s., not significant. *P < 0.05, ***P < 0.001; Mann–Whitney U‑test in d–f. Scale bars, 100 μm in b and 5 μm in c. 
See also Additional file 1: Table S1, Additional file 2: Figure S1 and Additional file 3: Figure S2
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extent to which VPS29 was co-labeled with the markers 
of Golgi, lysosome, and mitochondria was lower than 
that with endosomes, and dynamic coimaging showed 
that the retromer moved independent of lysosome (Addi-
tional file 8: Movie S4), the Golgi (data not shown), and 
mitochondria (data not shown).

Next, we performed immunocytochemistry against the 
known retromer component VPS35 in iNeurons. Many 
of Rab5 and Rab7 colocalized with VPS35 as observed in 
the live-cell imaging (Fig. 2c). However, there was no sig-
nificant difference in this colocalization between the PD 
and control groups.

VPS35 mutation affects the movement of early and late 
endosomes
To assess the effect of VPS35 mutation on endosomal 
trafficking, we first visualized the trafficking of early 
endosomes in iNeurons by live-cell imaging. To this end, 
we transduced cultured iNeurons (DIV42) with RFP-
Rab5a and simultaneously visualized their trafficking in 
neurites for one minute (Fig. 3a, Additional file 9: Movie 
S5, Additional file 10: Movie S6). In this experiment, cells 
with processes less than 4  μm width and longer than 
10 μm length were considered as iNeurons and used for 
the analysis (Additional file 3: Figure S2b). Single-particle 
tracking analysis revealed the presence of Rab5a-positive 
vesicles in static and fast-moving states; some Rab5a-
positive vesicles were static, while others moved quickly 
in the anterograde and retrograde directions in neurites. 
Velocity histograms of mobile Rab5a-positive vesicles 
are shown as kymographs (Fig. 3b, c). The maximum and 
mean velocities of early endosomes in the PD group were 
lower than those in the control group (Fig.  3d, e). The 
average speed of individual endosomes differed between 
the control and PD groups, suggesting that static Rab5a-
positive vesicles are increased in PD.

Next, we visualized the trafficking of late endosomes 
in iNeurons. We transduced cultured iNeurons (DIV42) 
with RFP-Rab7a and visualized their trafficking in neur-
ites for one minute (Fig. 4a, Additional file 11: Movie S7, 
Additional file  12: Movie S8). Similar to Rab5a-positive 
vesicles, some Rab7a-positive vesicles move quickly in 
the anterograde and retrograde directions in neurites. 
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Fig. 2 Colocalization of Retromers with Either Early or Late 
Endosomes. a, b HeLa cells cotransfected with fluorescently labeled 
VPS29‑YFP (green; retromers) and either RFP‑Rab5a (red; early 
endosomes) or RFP‑Rab7a (red; late endosomes) were imaged by 
time‑lapse fluorescence microscopy. The pictures in this figure were 
extracted from Additional file 5: Movies S1 and Additional file 7: Movie 
S3. Vesicles positive for VPS29 were almost always found adjacent to 
Rab5a‑positive vesicles. VPS29‑positive vesicles were almost always 
double positive for Rab7a‑positive vesicles. Yellow indicates the 
overlapping localization of green and red signals. c Immunostaining 
of iPSC‑derived neurons (iNeurons) for endogenous VPS35 and either 
Rab5 or Rab7; Rab5 and Rab7 partially colocalized with VPS35. There 
was no significant difference between the PD and control groups. 
Scale bars, 10 μm in a and b and 5 μm in c. See also Additional file 4: 
Figure S3 and Additional file 5: Movies S1, Additional file 6: Movie S2, 
Additional file 7: Movie S3, Additional file 8: Movie S4
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Interestingly, many of the moving early and late endo-
some (Rab5a: Control 80%, PD 76.7%. Rab7a: Control 
70%, PD 63.3%) change a direction at least once from 
anterograde to retrograde or retrograde to anterograde 
(Additional file  13: Figure S4). Velocity histograms of 
mobile Rab7a-positive vesicles are shown as kymographs 
(Fig. 4b, c). The maximum and mean velocities of Rab7a-
positive vesicles in the PD group were lower than those 
in the control group (Fig.  4d, e). The average speed of 
individual endosomes differed between the control and 
PD groups. These results indicate that VPS35 mutation 
affects the movement of early and late endosomes.

VPS35 mutation causes endosomal fission and fusion 
dysfunction
In processes during the endosomal trafficking of vesicles, 
such as sorting, tubulation, and fission/fusion events, 
the retromer and WASH complex are activated through 
their direct interaction, leading to the formation of tubu-
lar structures, and the WASH complex promotes the fis-
sion of tubular structures [44, 45]. A mutation in VPS35 
(D620N) diminishes the interaction between the WASH 
complex and retromer as well as impairs the fission pro-
cess [18, 46].
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Fig. 3 VPS35 Mutation Affects the Movement of Early Endosomes. a iPSC‑derived neurons (iNeurons) stably expressing RFP‑Rab5a were imaged by 
time‑lapse fluorescence microscopy. RFP‑Rab5a (red; early endosomes). Early endosomal vesicles are indicated by white arrows. b Distribution of 
the maximum velocities of moving RFP‑Rab5a vesicles in the control and PD groups (n = 3 per line, total n = 200 moving vesicles in 20 neurons in 
each group). c Distribution of the mean velocities of moving RFP‑Rab5a vesicles in the control and PD groups (n = 3 per line, total n = 200 moving 
vesicles in 20 neurons in each group). (d, e) Quantification of the maximum and mean velocities of vesicles (RFP‑Rab5a) in iNeurons. Data are 
represented as mean ± SEM; ***P < 0.001; Mann–Whitney U‑test in d and e. Scale bar, 10 μm in a. See also Additional file 9: Movies S5 and Additional 
file 10: Movie S6
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To assess the effect of VPS35 mutation on endosomal 
trafficking, especially the processes of fission and fusion, 
we next investigated the efficiency of vesicular fission and 
fusion in the endosome. We counted vesicles in iNeurons 
that underwent fission and fusion for one minute. We col-
lected time-lapse imaging data from iNeurons transfected 
with RFP-Rab5a and RFP-Rab7a in the same manner, as 
shown in Figs.  3 and 4, and observed the movement of 
individual vesicles in endosomes and counted fission and 
fusion events for one minute (Fig. 5a, b, Additional file 14: 
Figure  S5). The fission frequency for both Rab5a- and 
Rab7a-positive vesicles was significantly lower in the PD 

group than in the control group (Fig. 5c, d). Similarly, the 
fusion frequency for both Rab5a- and Rab7a-positive vesi-
cles was lower in the PD group than in the control group 
(Fig. 5c, d). Therefore, our results demonstrate that VPS35 
mutation causes endosomal fission and fusion dysfunction.

VPS35 mutation causes CI‑MPR transport defects in glial 
cells differentiated from iPSCs
Several retromer cargo proteins, such as CI-MPR, are 
essential for the delivery of the main component enzymes 
of lysosomes. One of the best-characterized cargos of the 
retromer is CI-MPR, which participates in the delivery of 
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Fig. 4 VPS35 Mutation Affects the Movement of Late Endosomes. a iPSC‑derived neurons (iNeurons) stably expressing RFP‑Rab7a were imaged 
by time‑lapse fluorescence microscopy. RFP‑Rab7a (red; late endosomes). Late endosomal vesicles are indicated by white arrows. b Distribution 
of the maximum velocities of moving RFP‑Rab7a vesicles in the control and PD groups (n = 3 per line, total n = 140 moving vesicles in 14 neurons 
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lysosomal enzymes, such as the aspartyl protease cath-
epsin D, to lysosomes [21]. Cathepsin D is the primary 
lysosomal enzyme that degrades α-synuclein, the etio-
logic protein of PD [47, 48]. Numerous past studies have 
used CI-MPR to assay retromers [19–21]. Next, to assess 
the effects of VPS35 mutation on endosomal trafficking 
and the localization of cargo proteins of retromers, we 
examined the localization of endogenous CI-MPR in glia 
from PD patients and healthy controls (Fig.  6a). In this 
experiment, cells with high ratio (more than 2.5) of total 
cell area (cytoplasm plus nucleus)-to-nucleus area were 
considered as glial cells for the analysis, since GFAP posi-
tive glial cells can be easily distinguished from iNeuron 
according to this criteria (Additional file  3: Figure S2b, 

c, Additional file  15: Figure S6a, c). CI-MPR was local-
ized to the perinucleus around the Golgi in the control 
group. In the PD group, CI-MPR appeared to accumulate 
around the Golgi (Fig. 6b). The intracellular distribution 
of endogenous CI-MPR was assessed by determining 
the ratio of the CI-MPR intensity in the Golgi to that 
in the cytoplasm, and the ratio was greater in the PD 
group than in the control group (Fig. 6c). Analysis of the 
CI-MPR distribution in iNeuron was difficult to detect, 
because the area of the Golgi in iNeuron was too small 
to analyze; however, quantification of the intensity of CI-
MPR staining in neurites reveled that there was no differ-
ence between PD and Control groups (Additional file 15: 
Figure S6a, b).
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in c and d. See also Additional file 9: Movies S5, Additional file 10: Movie S6, Additional file 11: Movie S7, Additional file 12: Movie S8, and Additional 
file 14: Figure S5
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Fig. 6 Distribution of CI‑MPR in Glial Cells Derived from iPSCs. a Immunostaining of glial cells for CI‑MPR and the Golgi. A proportion of CI‑MPR was 
localized to the perinucleus around the Golgi (Golgi area) in the control group. In the PD group, CI‑MPR appeared to accumulate around the Golgi. 
b Quantification of the results of localization analysis performed in a. The figure shows the intensity of CI‑MPR in the cytoplasm (without Golgi area) 
and Golgi area (n = 3 per line, total n = 69 cells in each group). c Quantification of the results of localization analysis performed in a using the ratio 
of intensities in the Golgi/cytoplasm (without Golgi) (n = 3 per line, total n = 69 cells in each group). d Immunostaining of iPSC‑derived DA neurons 
(arrow heads) for α‑synuclein and TH. e Quantification of the intensity of α‑synuclein in the cytoplasm in iPSC‑derived DA neurons. The intensity of 
α‑synuclein in the cytoplasm was higher in the PD group than in the control group. (n = 3 per line, total n = 45 cells in Control, n = 39 cells in PD). 
Data are represented as mean ± SEM; ***P < 0.001; Mann–Whitney U‑test in b and c. Scale bars, 10 μm in the upper part of a, 2 μm in the lower part 
of a and 5 μm in d. See also Additional file 15: Figure S6
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VPS35 mutation causes accumulation of α‑synuclein in DA 
neurons differentiated from PD‑derived iPSCs
Pathological feature of PD is accumulation of α-synuclein 
in the Lewy body [4]. We examined α-synuclein levels 
in cytoplasm of TH positive neuron differentiated from 
iPSCs. Immunostaining analysis showed an increase in 
intracellular α-synuclein intensity in DA neurons derived 
from PD patients (Fig. 6d, e). These results demonstrate 
a possibility of PD-relevant neuropathological feature 
in DA neurons derived from PD patients carrying the 
VPS35 D620N mutation.

Discussion
In the current study, we show that the VPS35 mutation 
(D620N) decreased the velocity and deficits in fission and 
fusion in endosomes from iNeurons.

VPS35, a major component of the retromer complex, 
is a key player in endosomal trafficking and the recogni-
tion of cargo proteins. Past studies have shown that the 
retromer has diverse roles in the endosomal system, such 
as trafficking, sorting, tubulation, and fission [14, 30]. 
Furthermore, our findings provide support for the results 
of these past studies. VPS35 is structurally important in 
the retromer complex; for example, VPS35 connects to 
sorting nexins (SNXs) through VPS26, inducing endoso-
mal tubulation. VPS35 directly contacts FAM21, a part 
of the WASH complex, which leads to vesicle fission in 
endosomes [44, 45, 49–51]. We suggest that the VPS35 
D620N mutation may change the three-dimensional 
structure of VPS35 and affects the functions of the ret-
romer, such as endosomal tubulation and fission, slowing 
the movement of early and late endosomes.

In the process of endosomal fission, first, the retromer 
recruits the WASH complex through their direct inter-
action in endosomes. WASH plays a major role in the 
polymerization of endosomal actin [44], which promotes 
the formation of retromer tubules. WASH functions to 
assist the fission of tubular structures in endosomes [44, 
45, 52]. A previous study showed that the VPS35 muta-
tion impairs the association and recruitment of the 
WASH complex to endosomes [46]. Our data support 
these data, and in the current study, we have shown for 
the first time that the VPS35 mutation impairs endosome 
fission in iNeurons.

The fusion of early endosomes requires Rab5 and 
COVERT, a multiprotein complex [52, 53]. However, in 
a previous study, there was no evidence that retromers 
are involved in the process of endosomal fusion. In the 
current study, our data strongly suggests that the VPS35 
mutation directly or indirectly impairs the endosomal 
fusion system, similar to its effects on fission. Since the 
VPS35 mutation impaired the fusion of endosomes, the 

retromer may have an unknown role in regulating fusion 
as well.

A number of studies have demonstrated the associa-
tion between retromer and endosomes. Seaman et  al. 
found a significant colocalization between VPS26 and 
Rab5 and modest colocalization between VPS26 and 
Rab7 in HeLa cells [21]. On the other hand, Rojas dis-
covered that VPS29 is almost always found on domains 
of the endosomal vesicles contained Rab7 and VPS29 
is also found in association with endosomal vesicles 
contained Rab5a, but VPS29 and Rab5a are largely 
segregated to different domains [34]. Our live-imaging 
show the appearance of VPS29 attaching and mov-
ing together with early and late endosomal vesicles 
which are dynamically moving around in cytoplasm of 
HeLa cells. These results indicate the close relationship 
between retromer and endosomes as previous studies.

Several retromer cargo proteins, such as CI-MPR, 
are essential for delivery of the main component 
enzymes of lysosomes. Retromer dysfunction, there-
fore, disrupts lysosomal function and integrity. It has 
also been reported that lysosomes and the lysosomal 
enzyme cathepsin D are fundamental regulators of 
α-synuclein degradation through the chaperone-medi-
ated autophagy pathway [47, 48].

CI-MPR is found in the TGN, early endosomes, 
late endosomes, and the plasma membrane [54]. CI-
MPR is primarily present in the TGN and transported 
between the TGN and endosomes. One of the most 
widely accepted tenets of retromer function is that the 
retromer complex mediates the endosome-to-Golgi 
retrieval of CI-MPR [19, 21]. However, recently pub-
lished data have questioned the validity of this long-
established theory [55]. Two studies indicated that the 
SNX-BAR dimer associate with the CI-MPR to mediate 
its retrieval independent of the retromer [56, 57].

There are several conflicted research findings about 
CI-MPR trafficking. Overexpression of VPS35 D620N 
or shRNA for VPS35 reduces CI-MPR colocalization 
with Golgi in primary rat neurons [58]. Similar results 
are obtained in patient-derived VPS35 D620N fibro-
blasts [59]. In contrast, Follett et  al. demonstrate that 
CI-MPR localizes on perinuclear in A431 cells trans-
fected with VPS35 D620N as well as in PD patient-
derived fibroblasts with VPS35 D620N [60]. Fuse et al. 
demonstrate CI-MPR colocalized with Golgi in the 
VPS35 knockdown HeLa cells [61], sharing similar 
results with our findings. On the other hand, another 
study reports VPS35 D620N expressing HeLa cells 
exhibit normal CI-MPR localization [46].

Interestingly, our study revealed that endogenous 
CI-MPR appeared to accumulate around the TGN 
in glia cells differentiated from iPSCs of PD patients. 
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CI-MPR-containing tubule-vesicular carriers could 
directly fuse with endosomes from the TGN to deliver 
their cargo. CI-MPR binds the cargo in the TGN and 
is then packaged into transport carriers that deliver the 
receptor with its bound ligand to early endosomes [54, 
62]. Our results suggest that CI-MPR trafficking from 
the TGN to endosomes may be impaired in patient 
cells. In addition, our study showed that the retromer 
may directly or indirectly regulate the trafficking of 
CI-MPR, indicating that the VPS35 mutation impairs 
the trafficking of CI-MPR from the TGN to early 
endosomes.

VPS35 and retromer dysfunction are also directly 
connected to the pathological effects of α-synuclein, as 
the loss of VPS35 function sensitized cells to the accu-
mulation of α-synuclein by interfering with the degra-
dation machinery in a range of model systems [63–66]. 
In patient-derived fibroblasts as well as in Drosophila 
cells, VPS35 depletion caused α-synuclein accumula-
tion [60, 64]. A functional interaction of VPS35 and 
α-synuclein has been reported previously, demon-
strating the exacerbation of α-synuclein pathobiology 
by VPS35 deletion in mouse hippocampus [63] and 
α-synuclein accumulation in ventral midbrain of mice 
with VPS35 depletion [65, 66]. In contrast, recent study 
showed the progressive degeneration of dopaminergic 
neurons without evidence of α-synuclein positive neu-
ropathology in ventral midbrain of aged VPS35 D620N 
knockin mice [67]. Our results demonstrate the induc-
tion of cell death and α-synuclein accumulation in DA 
neurons derived from PD patients carrying the VPS35 
D620N mutation. Therefore, PARK17 patient-derived 
iPSCs provide an excellent experimental tool for under-
standing the pathophysiology underlying PD.

Interestingly, reduced VPS35 levels predispose 
patients to Alzheimer’s pathology [68], and pharmaco-
logical chaperones that stabilize the retromer complex 
promote its function in APP trafficking [69], suggesting 
that similar approaches may be beneficial in PD. The 
dysfunction of VPS35/the retromer is believed to be 
a risk factor for the pathogenesis of both AD and PD. 
Furthermore, VPS35 deficiency enhanced AD neuropa-
thology in a Tg2576 mouse model of AD [23]. A current 
report identified that VPS35 regulates tau phospho-
rylation and neuropathology in tauopathies, such as 
progressive supranuclear palsy (PSP) and Pick’s disease 
[70].

Our findings indicate that VPS35 regulates endosomal 
trafficking in neurons. We suggest VPS35 as a potential 
therapeutic target for PD, AD, and other neurodegenera-
tive diseases.

Methods
Generation of iPSCs and cell culture
All PD iPSCs and control iPSCs were generated from 
human peripheral blood mononuclear cells using episo-
mal vectors according to a protocol from the Centre for 
iPSC Cell Research and Application (Kyoto University, 
Japan). All iPSC lines were cultured on mouse feeder 
cells in iPSC medium, which consisted of primate ES 
cell medium (ReproCELL) containing 10 μg/ml of bFGF 
(Wako).

Neural induction from human iPSCs
All iPSC lines were differentiated into DA neurons 
according to a protocol from the Centre for iPSC Cell 
Research and Application (Kyoto University, Japan) [39] 
with minor modifications. After passaging the iPSCs, we 
added LDN193189 (Stemgent) and A83-01 (Wako) to the 
iPSC medium to efficiently induce neuronal differentia-
tion. We also added purmorphamine (Cayman Chemical) 
and FGF8 (Wako) beginning at 1 DIV and CHIR99021 
(Cayman Chemical) beginning at 3 DIV. At 12 DIV, the 
cells were dissociated into single cells after 10  min of 
incubation with TrypLE Select (Gibco) and passaged in 
a flask by sphere formation, following which the medium 
was exchanged with neurosphere medium consisting of 
KBM neural stem cell medium (KOHJIN BIO) and B27 
supplement (Gibco) containing 10 μm/ml bFGF, human 
LIF (Millipore), LDN192189, and CHIR99021 from 7 to 
12 DIV. At 12 DIV, cells in neurospheres were dissociated 
into single cells after 10 min of incubation with TrypLE 
Select and replated on low-cell adhesion 96-well plates 
(Thermo) at a density of 5–8 × 104 cells/well in neuro-
sphere medium containing 10  ng/ml GDNF, 200  mM 
ascorbic acid, 20  ng/ml BDNF (all Wako), and 400  μM 
dbcAMP (Sigma-Aldrich). Subsequently, we exchanged 
the medium every 2–3  days. At 28 DIV, cells in neuro-
spheres were dissociated into single cells after 10  min 
of incubation with Accutase (Innovative Cell Technolo-
gies) and plated on glass dishes coated with poly-L-lysine 
(Sigma-Aldrich) and laminin (Gibco) with iNeuron 
medium consisting of neural differentiated media (Wako) 
until 42 DIV.

Cell culture
HeLa cells were grown in Dulbecco’s Modified Eagle’s 
medium (Invitrogen) supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin–streptomycin in 
5%  CO2 in a humid incubator at 37 °C.

Immunofluorescence studies
For immunocytochemical analysis, cells were fixed 
with 4% paraformaldehyde for 5  min (Fig.  1) or 10% 
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trichloroacetic acid for 10 min (Figs. 2c, 6a, Additional 
file  4: Figure S3 and Additional file  15:  Figure  S6) at 
room temperature. After permeabilization and block-
ing with 0.3% Triton X-100 for 30 min and 5% FBS for 
90 min, the cells were incubated with primary antibod-
ies at 4  °C overnight. Primary antibodies against the 
following were used for these analyses: Nanog (rab-
bit, 1:200; ReproCELL), SEEA-4 (mouse, 1:200; Milli-
pore), αSMA (mouse, 1:50; Dako), SOX-17 (goat, 15 μg/
ml; R&D Systems), MAP2 (mouse, 1:1000; Sigma-
Aldrich), MAP2 (chicken, 1:10,000; Abcam), MAP2 
(rabbit, 1:1000; Abcam), TH (rabbit, 1:500; Millipore), 
TH (mouse, 1:500; Millipore), cleaved caspase-3 (rab-
bit, 1:200; Cell Signaling), VPS35 (goat, 1:300; Abcam), 
Rab5 (rabbit, 1:300; Abcam), Rab7 (mouse, 1:1000; 
Abcam), CI-MPR (mouse, 1:100; Abcam), GM130 (rab-
bit, 1:100; Abcam), α-synuclein (rabbit, 1:150; Cell 
Signaling), GFAP (chicken, 1:1000; Abcam) and VPS29 
(rabbit, 1:50; Sigma-Aldrich). The following day, the 
cells were washed two times with PBS and incubated 
with secondary antibodies for 60  min at room tem-
perature. The secondary antibodies used were goat or 
donkey antibodies conjugated to Alexa 488, 546, 633, 
or 647 (1:500; Invitrogen). Nuclear staining was per-
formed with Hoechst solution (1:10,000; Invitrogen) 
with secondary antibodies. The immunoreactive cells 
were visualized using a confocal laser microscope 
(LSM880; Carl Zeiss). The length of cell processes and 
areas of the cell body and nucleus were quantified using 
ZEN software (Carl Zeiss).

To quantify the intensity of CI-MPR and α-synuclein 
shown in Fig.  6, images were analyzed by ZEN soft-
ware (Carl Zeiss). Briefly, Immunostaining images 
(Fig. 6b,c and e) were taken by same pinhole, digital off-
set and master gain using LSM880 (Carl Zeiss). Areas 
of cytoplasm, cytoplasm without Golgi and Golgi were 
measured using ZEN software. The intensity ratio was 
calculated by measuring the intensity of CI-MPR in the 
Golgi area and cytoplasm without Golgi area.

Cell transduction and time‑lapse fluorescence microscopy
HeLa cells and iNeurons (iPSC-derived induced neu-
rons) were transduced with lentivirus encoding VPS29-
YFP or baculovirus encoding Rab5a or Rab7a fused 
with RFP at N-terminal (Life Technologies CellLight 
Reagents BacMam 2.0; C10587 and C10589, respec-
tively). Lentivirus expression plasmids were con-
structed by inserting the VPS29-YFP fragment into 
the CSII-CMV-MCS vector from RIKEN BioResource 
Research Center. VPS29 and YFP were conjugated by 
PCR. Lentiviral vectors were generated according to 
a lentiviral vector preparation protocol from RIKEN 

BioResource Research Center. Sixteen to twenty-four 
hours after transduction, cells were imaged at 37  °C 
in a stage incubator (Carl Zeiss), and time-lapse fluo-
rescence images were acquired with a confocal laser 
microscope (LSM880, Carl Zeiss). Cells with long neu-
rites were chosen as iNeurons for the experiments. 
Images of vesicles were captured, and data acquisition 
was performed using Imaris software (Carl Zeiss). Bac-
ulovirus (Life Technologies CellLight Reagents Bac-
Mam 2.0; C10597) transduction was used to visualize 
markers of lysosomes.

Statistical analyses
Statistical analyses of the obtained data were performed 
using Mann–Whitney U-test (*P < 0.05, **P < 0.01, 
***P < 0.001), and the mean and standard error of the 
mean were plotted using Prism (Max OS X). The num-
ber of independent experiments (n) is indicated in each 
figure legend. Experimental data from each cell lines 
are presented separately in Additional file 16: Figure S7.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1304 1‑020‑00675 ‑5.

Additional file 1: Table S1. Summary of the iPSCs used in this study. iPSC 
lines were derived from healthy controls and patients with Parkinson’s 
disease and the VPS35 D620N mutation (PARK17). All cells were obtained 
from peripheral blood mononuclear cells.

Additional file 2: Figure S1. Generation and characterization of iPSCs 
from PD (PARK17) patients and healthy controls. (a) Cell morphology and 
expression of human embryonic stem cell markers. iPSCs were obtained 
from healthy controls and PD patients with the VPS35 D620N mutation. 
Control and PD patient iPSCs were morphologically identical to human 
embryonic stem cells (ESCs) and expressed the pluripotent stem cell 
markers NANOG and SSEA4. Nuclei were stained with Hoechst. In vitro 
differentiation of iPSCs to three germ layers identified by the following 
markers: Sox17 (endoderm), αSMA (mesoderm), and MAP2 (ectoderm). 
(b) Karyotype analysis of control and PD patient iPSCs. Scale bars, 100 μm 
in (a).

Additional file 3: Figure S2. Efficient of neural induction, morphologi‑
cal analysis and cell death. (a) ratio of MAP2 positive neuron and GFAP 
positive glia. (b) length (micro meter) of cell processes of MAP2 positive 
neuron and GFAP positive glia. (c) ratio of nucleus / nucleus+cytoplasm. 
(d) Quantitative analysis of the percent of apoptotic neurons among 
iNeurons (MAP2 positive cells). The percent of apoptotic cells was higher 
in the PD group than in the control group, but there was no significant 
difference between the PD and control groups. (1.0 = 100%, n = 3 in the 
control group, n = 3 in the PD group). Data are represented as mean ± 
SEM; n.s., not significant. Mann‑Whitney U‑test in (d). 

Additional file 4: Figure S3. Immunostaining of HeLa cells and iNeurons 
for endogenous VPS35 and VPS29. (a) Immunostaining of HeLa cells for 
endogenous VPS35 and VPS29. (b) Immunostaining of iNeuron for endog‑
enous VPS35 and VPS29. Scale bars, 5 μm in (a) and (b). 

Additional file 5: Movie S1. Colocalization of retromers (VPS29‑YFP; 
Green) with early endosomes (RFP‑Rab5a; Red) in HeLa cells.

Additional file 6: Movie S2. Magnified view showing the colocalization 
of retromers (VPS29‑YFP; Green) with early endosomes (RFP‑Rab5a; Red) 
in HeLa cells.

https://doi.org/10.1186/s13041-020-00675-5
https://doi.org/10.1186/s13041-020-00675-5


Page 13 of 15Bono et al. Mol Brain          (2020) 13:137  

Additional file 7: Movie S3. Colocalization of retromers (VPS29‑YFP; 
Green) with late endosomes (RFP‑Rab7a; Red) in HeLa cells.

Additional file 8: Movie S4. Colocalization of retromers (VPS29‑YFP; 
Green) with lysosomes (Lamp1‑RFP; Red) in HeLa cells.

Additional file 9: Movie S5. iPSC‑derived neurons (iNeurons) from 
healthy controls stably expressing RFP‑Rab5a were imaged by time‑lapse 
fluorescence microscopy.

Additional file 10: Movie S6. iPSC‑derived neurons (iNeurons) from PD 
patients stably expressing RFP‑Rab5a were imaged by time‑lapse fluores‑
cence microscopy.

Additional file 11: Movie S7.  iPSC‑derived neurons (iNeurons) from 
healthy controls stably expressing RFP‑Rab7a were imaged by time‑lapse 
fluorescence microscopy. 

Additional file 12: Movie S8. iPSC‑derived neurons (iNeurons) from PD 
patients stably expressing RFP‑Rab7a were imaged by time‑lapse fluores‑
cence microscopy.

Additional file 13: Figure S4. Movement of early and late endosome in 
neurites. (a) Movement of Rab5a positive early endosomes. (b) Movement 
of Rab7a positive late endosomes.

Additional file 14: Figure S5. Endosomal fission and fusion related to the 
data in Figure 5. (a) RFP‑Rab5a in the neurites of control and PD iNeurons 
was imaged by time‑lapse fluorescence microscopy. (b) RFP‑Rab7a in 
the neurites of control iNeurons was imaged by time‑lapse fluorescence 
microscopy.

Additional file 15: Figure S6. Localization of CI‑MPR in neurons derived 
from iPSCs (iNeurons) related to the data in Figure 6. (a) Immunostaining 
of neurons derived from iPSCs (iNeurons) from PD patients and healthy 
controls for endogenous CI‑MPR and the Golgi. Most CI‑MPR was localized 
around the Golgi. (b) Quantification of the results of the localization analy‑
sis performed in (a). The figure shows the intensity of CI‑MPR staining in 
neurites (n = 3 per line). There was no difference in intensity between PD 
and Control groups. (c) Immunostaining of glial cells derived from iPSCs 
from healthy controls for endogenous CI‑MPR, GM130 and GFAP. Data are 
represented as mean ± SEM; n.s., not significant; Mann–Whitney U‑test in 
(b). Scale bar, 10 μm in (a) 5 μm in (c).

Additional file 16: Figure S7. Experimental results in each iPS line. 
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